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Abstract—With the high integration density and complexity
of the modern multi-core platform, thermal problems become
more and more significant for both the manufacture and system
designer. Dynamic thermal management technique is one effective
and efficient way to mitigate and avoid thermal emergences. In
this paper, we propose a novel predictive dynamic thermal man-
agement algorithm to maximize the multi-core system throughput
while satisfying the peak temperature constraints. Different from
the conventional approaches, we found that it is not necessarily
always a good choice to migrate a hot task to the core with
the lowest temperature. Instead, in our algorithm, we develop
a new temperature prediction technique and migration scheme
that take the local temperature of a core as well as the impacts
from neighboring cores into considerations. According to our
experiment results on a practical Intel desktop platform, the
proposed algorithm can significantly improve the throughput
compared with the conventional approach.

I. INTRODUCTION

Fueled by the market need for high computation capability,
the size of transistors is continuously shrinking, and more and
more transistors are integrated into a single chip to build up
more complicated circuit architectures, i.e. chip multiproces-
sors (CMPs). As a result, the power density within the chip and
heat generated by transistors increase rapidly in CMPs. Thus,
power and thermal issues become the major challenges for the
further improvement of computing performance on CMPs.

The rapidly growing heat generation greatly increases the
packaging/cooling costs, and adversely affects the life-span,
performance, and reliability of a computing system. The
increased heat dissipation can cause thermal failures, even
permanent physical damage to the processor. Therefore, an
effective thermal management solution is highly desirable, not
only to balance the chip’s temperature but also to enable the
computing system to operate at a high computing performance
without exceeding its temperature limit.

The dynamic thermal management technique (DTM) is one
of the most effective approaches to address the power and
thermal design problem. Many theoretical works have been
done by using the dynamic voltage and frequency scaling
(DVFS) technique [1] [2] [3], which can control the tem-
perature by dynamically adjusting the processor speed based
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on the workload. For example, Chantem et al. [4] proposed
an algorithm to run real-time tasks under the temperature
constraint by switching two avaliable neighboring speed of
the ideal speed. However, DVFS techniques sacrifice the per-
formance to cool down the temperature. Task migration is an
alternative technique to manage the temperature by balancing
the workload among CPU cores without slowing down the
processing speed [5] [3] [6]. For example, Gomaa [7] et al.
proposed a reactive task migration algorithm, which migrates
the task away from overheated core to the coolest core.
However, most theoretical thermal management algorithms are
derived based on simplified models and assumptions, such as
the assumption that the accurate temperatures of processors
are readily available, which is not necessarily true on practical
platform.

When DTM techniques are applied for real applica-
tions, they must deal with important practical details in
the practical environment. To this end, many researches
have been carried out based on practical hardware plat-
forms [8] [9] [10] [11] [12] [13]. For example, Yefu [14]
et al. proposed a chip-level power management algorithm by
using control theory and implemented their algorithm on an
Intel Xeon desktop. Ahn [8] et al. developed and validated
a heuristic to reduce the power consumption and control
the temperature on the Intel Centrino Duo and ARM-11
MPCore platforms. The above algorithms rely on the thermal
sensor reading to trigger their DTM actions. Since the thermal
sensor lacks accuracy due to their placement location and
long latency, the effectiveness of the DTM techniques can be
severely degraded. Even if the thermal sensor can accurately
detect a thermal emergency when temperature reaches the
threshold, it still takes 100 to 200 millisecond for the DTM
manager to decrease the frequency or migrate the hot task to
a different processor [2]. As a result, the temperature would
exceed the threshold before the algorithm takes effect. To
this end, predicting the potential thermal emergency before
thermal failure occuring is a very important feature for the
DTM algorithm [6]. In response to this, Inchoon [5] et al.
proposed a temperature prediction algorithm, which takes the
application’s thermal behavior into consideration. Khan [3]
et al. developed an alternative thermal management schedule,
which combined temperature history based prediction and task



migration techniques to efficiently control the CPU temper-
ature under threshold. However, they assumes that at each
sampling point, the temperature will increase at the same rate
until it reaches the threshold, which is not true for the practical
scenario.

In this paper, we develop an on-line predictive thermal
management algorithm to maximize the throughput on multi-
core systems while satisfying the peak temperature constraint.
Compared with the previous work, we make three major
contributions in this work:
• We develop a temperature prediction method, which can

predict the temperature of a core more accurately by
taking its temperature as well as the neighboring impacts
into consideration.

• We develop a new task migration strategy. While it has
been a common approach to migrate tasks from the
hottest to the coolest core, our approach chooses the
destination core differently. We choose the destination
core not only by its current temperature, but also by the
temperature trends as well as the neighboring impacts as
well.

• We validate our algorithm on a practical hardware test
bed, i.e a desktop workstation with an Intel i5 750 quad
core microprocessor. The experimental results show that
our proposed algorithm can significantly outperform the
conventional approach.

The rest of the paper is organized as follows. In Section
2, we introduce the preliminaries for this paper, and use
an example to motivate our research. Section 3 introduces
our proposed algorithm. Experimental results are discussed in
Section 4, and the conclusion is given in Section 5.

II. PRELIMINARY

A. Problem description

The system considered in this paper consists of N tasks,
denoted as Γ = {τ1,τ2, ...,τN} and M identical processors,
denoted as P = {P1,P2, ...,PM}. The problem discussed in
this paper is how to manipulate the scheduler such that
the throughput of the system can be maximized under peak
temperature constraint. The formal description of the problem
is represented below.

Problem Description: Given a task set Γ and a multi-core
system P , maximize the throughput of the system under the
peak temperature constraint.

For processor Pi, we use a tuple (Ti, ti) to represent the
temperature of Pi at a certain time point ti. To be more specific,
we use T curr

i and T prev
i to denote Pi’s current temperature and

previous temperature respectively, while tcurr
i and t prev

i are the
corresponding times.

In this paper, we develop a heuristic to solve the above
problem based on task migration and DVFS. We first intro-
duce a new temperature prediction method, which predicts
the future temperature of a processor core by considering
both local temperature history and neighbors’ effect. Once
a potential risk detected under our temperature prediction
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Fig. 1. Temperature history based prediction

model, i.e. the predicted temperature is over the threshold,
we dynamically manage the executions of corresponding tasks
on that core by either migration or DVFS. By considering
the neighbors’ temperature and their changing trends, we can
select a processor among all available candidates to improve
the total system performance from a global and long-term
perspective.

III. ALGORITHM

In this section, we first introduce our temperature prediction
method. Then we discuss our approach to select the candidate
core to migrate tasks from the core that is having a thermal
emergency situation. Finally, we present our overall algorithm.

A. Temperature Prediction

In this subsection, we introduce our approach that can pre-
dict the future temperature of a core as well as its future trend
more accurately. First, we introduce the following definition to
represent the future temperature increment of each processor
individually.

Definition 1: Given processor Pi, the individual increment
factor of Pi, denoted as I in

i , is defined as

I in
i = T curr

i −T prev
i (1)

This local temperature increment will be used to predict
the future temperature at the next sampling point, as shown
in Figure 1. (∆t is the sampling period). For a typical desktop
computer, the sampling period has been set to 1 second, since
this is approximate how long it takes for the thermal sensor
to reflect a temperature change [15].

Besides its own power consumption, the temperature of a
processor is also affected by other processors on the same chip,
especially its neighbors. In this paper, we define the neighbor
processors of a processor Pi, denoted as P NB

i , as the cores
which are adjacent to Pi. When predicting the temperature
of a processor, to simplify our algorithm, we consider only
the heat transfer impacts from its neighboring processors.
By considering the effect of neighbor processors, we define
the following concept to represent the neighbors’ thermal
increment for a given processor.



Definition 2: Given a processor Pi, the neighbor increment
factor of Pi, denoted as I nb

i , is defined as

I nb
i =

∑Pj∈P NB
i

(T curr
j −T prev

j )

|P NB
i |

(2)

With Definition 1 and 2, we are now ready to introduce our
temperature prediction method. Let T pred

i denote the predicted
temperature for Pi. We formulate T pred

i as a linear function of
its current temperature T curr

i , its temperature increment rate Iin
i ,

and also its neighbor increment factor Inb
i , as shown below:

T pred
i = αi ·T curr

i +βi · I in
i + γi · I nb

i (3)

where αi, βi and γi are weight parameters for Pi.
To determine the values of weight parameters, we resort to

the least-square estimation method [5]. Let

T pred(t) = α ·T curr(t)+β · I in(t)+ γ · I nb(t)

where t = [t1, t2, ..., tn] are different sampling points, T curr(t),
I in(t) and I nb(t) are corresponding values at t. By collecting
a set of training data, (t j;T pred

j ) where j = 1, ...,m, we have

T̂ pred = T̂ ×Ŵ

where T̂ is a 3×m matrix:

T̂ =

T curr(t1) I in(t1) I nb(t1)
...

. . .
...

T curr(tm) I in(tm) I nb(tm)

 (4)

Ŵ is a 3×1 unknown weight parameter vector:

Ŵ = [α, β, γ]T (5)

and T̂ pred is a m×1 output vector:

T̂ pred = [T pred
1 , T pred

2 , ...,T pred
m ]

T
(6)

If (T̂ pred)T T̂ pred is nonsingular, we have

Ŵ = ((T̂ pred)T T̂ pred)
−1
(T̂ pred)

T
T̂ pred (7)

Based on the weight parameters calculated from the above
equation, we can predict the future temperature of a processor
by applying equation (3).

B. Candidate processor for migration

When a processor is in temperature emergency, one solution
is to migrate the task to other processors that are cooler. To
identify the appropriate destination processor, one common
approach such as [7] is to migrate tasks to the processor with
the lowest current temperature. In our approach, besides the
current temperature of the candidate processor, we also take
considerations of its neighboring temperatures, as well as its
temperature changing rate.

We first introduce a concept, heat index, to quantify how
hot a candidate processor (i.e. Pk) is.

Definition 3: Given processor Pk, the heat index of Pk,
denoted as H (Pk), is defined as

H (Pk) =
∑Pj∈P NB

k
⋃
{Pk}Tj

|P NB
k

⋃
{Pk}|

(8)

Intuitively, the smaller the heat index of a processor is, the
better candidate processor it can be.

Besides the heat index of a processor, we also consider the
temperature changing rates of itself as well as its neighbors.
We present the following definition, i.e. the heat index increas-
ing factor of a processor Pk, to capture this concept.

Definition 4: Given processor Pk, the heat index increasing
factor of Pk, denoted as I (Pk), is defined as

I (Pk) =
∑Pj∈P NB

k
⋃
{Pk}

T curr
j −T prev

j
tcurr
j −t prev

j

|P NB
k

⋃
{Pk}|

(9)

According to Definition 4, I (Pk) indicates how fast the temper-
ature at Pk and its neighbors can increase in average. Thus, the
smaller heat index increasing factor, the better that candidate
processor can be. From equation (8) and (9), we choose the
migration candidate as the one that minimizes

H (Pk)+ I (Pk) ·∆t (10)

where ∆t is the length of the sampling interval.
Note that, task migration is not always effective in dealing

with thermal emergency, especially when the workload is
heavy. Given a processor Pk in thermal emergency, it does
not help much if the selected target processor (e.g. Pk) for
migration has a temperature very close to the peak temperature
limit, even if the H (Pk)+ I (Pk) ·∆t is minimum among all
other processors. It may even degrade the throughput perfor-
mance to frequently migrate tasks among different processors.
To avoid this scenario, in our approach, the tasks on processor
Pk are only allowed to migrate to processor Pk if

H (Pk)+ I (Pk) ·∆t ≤ T T HRESHOLD (11)

where T T HRESHOLD is the given temperature constraint. Oth-
erwise, we will have to adopt an alternative solution, i.e.
by reducing the performance of Pk using techniques such as
DVFS, to deal with the thermal emergency.

C. Thermal Management Algorithm

In this subsection, we introduce our proposed thermal man-
agement algorithm, the Neighbor-Aware Dynamic Thermal
Management (NADTM) algorithm, to maximize the through-
put of a multi-core system while keeping the temperature
under a predefined peak temperature limit.

Algorithm NADTM is presented in Algorithm 1. For pro-
cessor Pi, we read its temperature sensor to get its current
temperature reading and then predict its temperature at the
next sampling point based on the method described in section
III-A. If the predicted temperature exceeds the temperature
constraint, we then search for a candidate processor that we
can migrate the tasks to. The candidate processor are selected
based on method presented in section III-B. If such a processor



Algorithm 1 Neighbor-Aware Dynamic Thermal Management
(NADTM) Algorithm

1: T prev
i := T curr

i // the temperature at previous sampling
point ;

2: T curr
i := the temperature of Pi from temperature sensor;

3: T pred
i := predicted temperature of Pi at next sampling point

based on equation (3);
4: if T pred

i > T T HRESHOLD then
5: Pk := the processor from P such that H (Pk)+I (Pk) ·∆t

is minimum;
6: if H (Pk)+ I (Pk) ·∆t ≤ T T HRESHOLD then
7: migrate current running tasks on Pi to Pk;
8: else
9: degrade the performance of Pi by setting its speed to

the pre-defined safe speed (i.e SSAFE
i );

10: end if
11: end if

is not available, we then degrade the performance of the
processor to a safe speed to avoid the thermal constraint
violation.

We assume that the weights in equation (3) have been iden-
tified off-line. The safe speed to run a processor is essentially
the maximum processor speed for a processor such that its
peak temperature will not exceed the temperature constraint.
We assume that this speed is also obtained off line. More
details on how to obtain the safe speed in our approach is
introduced in the next section.

IV. EXPERIMENTS AND RESULTS

In this section, we first introduce the experiment setup.
Then we validate the accuracy of our temperature prediction
technique by comparing it with the conventional prediction
approach. At last, we verify the performance improvement of
our thermal management algorithm by analyzing the efficiency
of the neighbor-aware temperature prediction and migration,
respectively.

A. Experiment setup

Our hardware platform is based on a Dell Precision T1500
Desktop workstation with an Intel i5 750 quad core micro-
processor, with a running Linux operating system with kernel
version of 2.6.23. The processor has integrated with Enhanced
Intel SpeedStep Technology (EIST) [16] and supports 12
different working frequency levels. We adopted the CPUfreq
Linux kernel subsystem to implement the DVFS features.

All experiments were carried out with the same ambient
temperature. In addition, the fan speed has been fixed to
ensure all experiments were conducted under the same cool-
ing operations. We selected six benchmarks galgel, parser,
ammp, crafty, lucas and equake from the well-known com-
mercial benchmark SPEC CPU2000, including both integer
and floating point operation to get credible and comparable
experiment results. Those benchmarks have been grouped into
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Fig. 3. Prediction accuracy comparison with different benchmarks

three categories, which are hot, warm, and cool, based on their
thermal characteristics.

To determine the safe speed for a processor, we conducted
the off-line thermal profiling analysis by running each bench-
mark with different CPU speeds. The stable temperature with
its corresponding speed level were stored in a lookup table.
To ensure the schedule effectiveness, each benchmark was
tested with the hot benchmark applications running on its
neighboring processors. With the lookup table, the safe speed
is the maximal speed corresponding to the stable temperature
lower than the given temperature constraint.

B. Temperature prediction analysis

To evaluate the accuracy of our NADTM temperature
prediction technique, we compared our heuristic with the
conventional temperature prediction approach, which simply
uses the previous and current temperature values of a processor
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to predict the next temperature value without considering the
heat transfer from the neighboring processors.

Figure 2 shows the temperature traces when running bench-
mark galgel, as well as the temperature prediction results
based on our proposed temperature prediction method and
the conventional one. From Figure 2, we can clearly see
that the temperature prediction results of using the NADTM
approach is much closer to the actual temperature value than
the conventional approach. The experiment result shows that
the NADTM approach has a smaller maximum prediction error
of 1oC comparing with 3oC by the conventional approach.
The results shown in Figure 2 demonstrate that, by taking
consideration of the heat transfer impacts from the neighboring
processors, the temperature prediction methods introduced in
section III-A can achieve a higher accuracy than the traditional
method.

To further validate this conclusion, we ran different bench-
mark programs on our test platform. First, temperature pre-
diction results will be collected and compare with the actual
temperature value. Then the temperature prediction accuracy
by using two different prediction methods have been plotted
in Figure 3. i.e the prediction accuracy is the number of
accurate prediction over total number of prediction. In order
to compare the two approaches, both results are normalized
to the approach without NADTM. From Figure 3 we can
see that our NADTM approach can improve the temperature
prediction accuracy by 38% in average compared with the
conventional approach. The experiment results prove that
our neighboring aware temperature prediction method could
effectively improve the prediction accuracy.

C. Performance analysis

We further study the performance of our proposed algorithm
in term of its capability to satisfy the temperature constraints
and its throughput under the temperature constraints.

First, we analyze how effective that our NADTM algorithm
can maintain the temperature under the threshold. Ideally, a
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Fig. 5. Execution time comparison with four different apporaches. NP and CP
represent the neighbor-aware and conventional prediction respectively. NM
and CM represent neighbor-aware and conventional migration respectively

thermal management schedule should push the computing sys-
tem to the thermal boundary while delivering highest system
performance. At the same time, the temperature need to be
carefully maintained under the threshold. We test the efficiency
of our NADTM algorithm by running a benchmark galgel.
The temperature traces after implementing the NADTM and
original Linux operating system schedule have been plotted in
Figure 4. By default, the original operating system scheduler
can lead to the temperature to 44oC. We assume 42oC is
the predefined threshold. From Figure 4 we can see that
the NADTM thermal management algorithm can effectively
maintain the temperature under the threshold, Meanwhile, it
has a small temperature oscillation of 1oC at the temperature
stable state. Since the processor temperature can be maintained
at a level that is very close to the temperature limit, our
approach can lead to a high throughput.

Next, we study the effectiveness of our new prediction
and migration schemes on the throughput improvement. We
use NP, CP to denote neighbor-aware prediction and conven-
tional prediction, and NM, CM for neighbor-aware migration



and conventional migration, respectively. The conventional
temperature prediction approach refers to the one that predicts
the future temperature solely based on its own temperature
history. And the conventional migration approach refers to
the approach that simply migrates the running tasks from the
hottest core to the coolest core. As a result, we have four
combinations, i.e. CP CM NP CM, CP NM and NP NM.

We first compare the throughput of each approach when
running a single task on our hardware platform. In this ex-
periment, six previously used benchmarks have been selected
to provide reliable experiment results. The execution times by
using different approaches have been recorded for comparison,
those experiment results have been normalize and plotted
in Figure 5(a). The experiment results show that, with the
neighbor-aware prediction algorithm i.e. NP CM can improve
the throughput over CP CM as much as 1.7% in average.
Since our prediction technique is more accurate than the
conventional approach as shown before, it helps to make better
scheduling decision and thus improve the performance. An-
other interesting result is that CP NM improves the throughput
over CP CM as much as 3.6%. This is because CP NM can
find the appropriate migration candidate rather than simply
locate the coolest core. By combining our proposed prediction
and task migration algorithm together, NP NM can achieve
an average of 5.8% overall throughput improvement when
compared with CP CM

To further test our thermal management algorithm, we
assigned multiple tasks to the multicore platform. By gradually
increasing the number of task running on the multicore proces-
sor, their corresponding execution times have been recorded
for comparison. The execution times have been normalized and
plotted in Figure 5(b). As we can see from the experiment
result, the overall throughput decreases as the number of
tasks increases. Another important observation is that when
the number of tasks is more than the number of core ( i.e.
the number of task is more than 4 ), the throughput drops
significantly. The experiment results show that the throughput
for the NP CM decreased by 0.9% while the tasks increased
from 1 to 6. The throughput for CP NM decreased by 3%.
The throughput decreased by 3.6% for the overall NADTM
algorithm. All these results show that the proposed algorithm
works better when for a lighter workload than a heavy work-
load.

V. CONCLUSION

In this paper, we present a neighbor-aware dynamic thermal
management algorithm to maximize the system throughput
under peak temperature constraint. Our solution is important
because the neighbor effect for temperature prediction on
CMPs can be significant, and the processor with the lowest
temperature may not be the best choice for migration. Our
proposed approach takes the neighbor effect into considera-
tion to make a more accurate temperature prediction and to
determine a better migration destination. Experimental results
based on practical benchmark and practical desktop platform
confirm our conclusions and demonstrate the effectiveness

of our approaches. All these results show that the proposed
algorithm works better when for a lighter workload than a
heavy workload.
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