
Quantifying the Impact of Frequency Scaling on

the Energy Efficiency of the Single-Chip Cloud Computer

Andrea Bartolini∗, MohammadSadegh Sadri∗, John-Nicholas Furst†, Ayse Kivilcim Coskun† and Luca Benini∗
∗University of Bologna, DEIS - Bologna, Italy. Email: {a.bartolini, mohammadsadegh.sadr2, luca.benini}@unibo.it

†Boston University, ECE Department - Boston, MA, USA. Email: {jnfurst, acoskun}@bu.edu

Abstract—Dynamic frequency and voltage scaling (DVFS)
techniques have been widely used for meeting energy con-
straints. Single-chip many-core systems bring new challenges
owing to the large number of operating points and the shift
to message passing interface (MPI) from shared memory
communication. DVFS, however, has been mostly studied on
single-chip systems with one or few cores, without considering
the impact of the communication among cores. This paper
evaluates the impact of frequency scaling on the performance
and power of many-core systems with MPI. We conduct
experiments on the Single-Chip Cloud Computer (SCC), an
experimental many-core processor developed by Intel. The
paper first introduces the run-time monitoring infrastructure
and the application suite we have designed for an in-depth
evaluation of the SCC. We provide an extensive analysis quan-
tifying the effects of frequency perturbations on performance
and energy efficiency. Experimental results show that run-
time communication patterns lead to significant differences in
power/performance tradeoffs in many-core systems with MPI.

I. INTRODUCTION

Advancements in the process technology enables in-

tegrating dozens of cores on a single chip today. Such

many-core systems bring new challenges in runtime system

management as they offer a vast amount of operating points,

covering various speed settings of cores and workload

allocation scenarios. In addition, many-core systems are

expected to leverage message passing interface (MPI) for

inter-core communication, as opposed to the shared mem-

ory communication available in modern commercial multi-

core systems. MPI is a standardized and portable message-

passing system designed to function on a wide variety of

parallel computers. MPI has been widely used in computing

clusters for communication across nodes; however, many

open research problems exist for single-chip many-core

systems with MPI.

In tandem with the increase in the number of cores

integrated on a single-chip, energy efficiency has become

a critical constraint in computing. Today’s processors typi-

cally include a set of built-in power management features.

Dynamic voltage and frequency scaling (DVFS) is one

of the most commonly utilized techniques for reducing

power consumption of chips. Recent research has developed

efficient DVFS techniques based on characterizing on-

chip/off-chip workloads [4], identifying application phases

with a high number of stall cycles [9], or using machine

learning techniques to adapt to changing workload [6],

[10]. The common goal in these approaches is reducing

the performance overhead of operating at lower frequencies,

as DVFS may incur severe slow-downs. These techniques

improve the energy efficiency for the current single-core or

multi-core systems with a few number of cores; however,

they do not capture the unique performance-power tradeoffs

in many-core systems with MPI.
The goal of this paper is to analyze the impact of core

frequency perturbations on the performance of many-core

systems with MPI. To enable this analysis, we utilize the

Single-chip Cloud Computer (SCC) [8], which is a 48-core

experimental processor created by Intel Labs. The SCC

incorporates features such as a network-on-chip (NoC),

DVFS capabilities, and support for MPI. The chip resem-

bles a cloud of computers integrated into a single chip, as

each core is capable of booting an OS instance. While in-

frastructures to measure real-time performance, power, and

temperature exist for commercial systems [14], the unique

features of the SCC require developing a novel framework

for runtime monitoring of the system. This paper is the first

to provide a comprehensive measurement infrastructure for

the SCC. We then leverage this infrastructure to quantify

frequency setting-performance correlations under a diverse

set of workloads. The paper makes the following specific

contributions:

• We develop an infrastructure to accurately track per-

formance, power, and temperature of the SCC at run-

time with very low performance overhead. Our setup

collects performance counter data from each core,

tracks main memory accesses, logs messages passed

among cores, and measures power and temperature.

• To analyze the impact of frequency changes on the

performance for many-core systems with MPI, we

develop a benchmark suite for the SCC. The bench-

marks in the suite cover a wide range of workload

scenarios such as applications with different levels of

communication distances and intensity or applications

that stress different levels of the memory hierarchy.

• We conduct a large set of experiments using the

monitoring infrastructure and the benchmark suite to

measure the impact of frequency changes on per-

formance and power. Our analysis demonstrates that

the communication patterns have a significant impact

on the performance loss. In fact, under frequency

perturbations, differences in message traffic can create

execution time overhead and energy loss variations

from 10% up to 200%.

The rest of the paper starts with an overview of the

related work. Section III provides the details of our mea-978-3-9810801-8-6/DATE12/ c© 2012 EDAA

surement infrastructure. Section IV discusses the applica-

tion suite developed for the experiments. In Section V we

demonstrate the results of our analysis and Section VI

concludes the paper.

II. RELATED WORK

DVFS is one of the most commonly used power man-

agement knobs in current processors for regulating energy

consumption. Earlier solutions focus on single-core and

embedded architectures [7], [4], [6]. More recent methods

target specifically multi-core systems [13], [16], [17], [12].

Kim et al. [13] investigate how different DVFS granularities

(i.e., chip-wide vs. per-core DVFS) in chip multiproces-

sors (CMP) impact the energy savings and the overhead

of power management. They show that memory-bounded

phases allow operating at low frequencies with limited

performance loss. As applications often include phases of

asynchronous memory events across the cores, per-core

DVFS brings substantial advantages in energy savings [13].

As the number of cores integrated on a chip increases,

per-core DVFS leads to the complexity of selecting the

optimal voltage and frequency levels for all the cores among

a vast number of operating points. To overcome this issue,

de-centralized techniques have been proposed [16], [17].

These techniques utilize a hierarchical structure where a

central controller allocates power budgets to each local

controller. Each local controller then selects the optimal

frequency assignment for a small set of cores based on the

provided power budget.

Kai at al. [16] introduce a novel layer in the con-

troller structure to perform group-level partitioning. Their

technique controls a set of cores that are running the

threads of a parallel application. For parallel applications,

the authors show that a frequency selection policy that

considers the threads as independent tasks leads to sub-

optimal performance. Group-level partitioning allocates the

frequency/power quotas to improve the performance of

critical threads within a parallel application. Thread crit-

icality can be identified in a shared memory system using

a weighted cache miss index [3]. Using thread criticality in

management avoids favoring high-IPC threads for assigning

high frequencies, which can potentially result in imbalanced

execution [1]. While some of these techniques are scalable

to many-core systems, they mainly focus on shared mem-

ory architectures and do not consider how DVFS affects

performance in MPI-based many-core systems [8].

At the cluster-level, recent studies [15], [11] show that

performance models for MPI applications can be analyti-

cally derived, and these models are effective in identifying

aggregating patterns that minimize the cluster’s energy con-

sumption. When the MPI protocol is implemented within

cores of the same chip, however, the performance/energy

tradeoffs change significantly owing to the substantial de-

crease in the communication latency between different MPI

nodes in the NoC [19], [18]. Therefore, compared to multi-

node MPI-based systems, scaling the frequency of cores

in a single-chip many-core system with MPI has higher

impact due to the stronger coupling of communication

characteristics and performance.

This work differentiates from prior work in DVFS and

many-core system management as we explicitly target

single-chip many-core systems with MPI. We run frequency

perturbation experiments on the Intel SCC, analyzing the

impact on power and performance. In addition to providing

an infrastructure for detailed monitoring of the SCC, our

paper models how frequency map of cores, message traffic,

and other architectural events correlate with application per-

formance. We expect our results to guide energy-efficient

policy design for DVFS on many-core systems with MPI.

III. PERFORMANCE, POWER, AND TEMPERATURE

MEASUREMENT INFRASTRUCTURE FOR THE SCC

Analyzing the impact of frequency scaling on the energy

efficiency of the SCC requires monitoring performance,

power, and temperature of the system at runtime. The SCC

includes unique hardware and software features compared

to off-the-shelf multi-core processors; thus, a novel infras-

tructure is needed to enable accurate and low-cost runtime

monitoring. This section discusses the relevant features in

the SCC architecture and provides the details of the novel

monitoring framework we have developed.

Hardware and Software Architecture of the SCC:

The SCC has 24 dual-core tiles arranged in a 6x4

mesh. Each core is a P54C CPU and runs an instance

of Linux 2.6.38 kernel. Each instance of Linux executes

independently and the cores communicate through a net-

work interface. Frequency setting of the tiles can be scaled

individually, whereas the voltage can be scaled for groups

of four tiles. Each core has private L1 and L2 caches. Intra-

core cache coherence is managed through a software proto-

col as opposed to commonly used hardware MESI/MOESI

protocols. Each tile has a message passing buffer (MPB),

which facilitates the message exchange among cores. The

entire system is controlled by a board management mi-

crocontroller (BMC) that initializes or shuts down critical

system functions. The SCC is connected by a PCI-Express

cable to a PC acting as the Management Console (MCPC).

Each tile in the SCC contains two ring-oscillator based

thermal sensors: one located in proximity of the router and

the other located close to the bottom core’s L1 cache. The

BMC also includes a power sensor capable of measuring

the full SCC chip power consumption. This sensor can be

directly accessed from the SCC cores through an emulated

register in the FPGA.

Each P54C core has two performance counters. These

counters can be programmed to track various architectural

events (such as number of instructions or cache misses) at

periodic intervals. Performance counters can be accessed

from the specific core they are located at by reading the

dedicated registers. SCC system also includes reconfig-

urable extensions. The network-on-chip (NoC) is connected

to an FPGA through a router. This FPGA chip can be used

for adding useful features that are not available in the SCC.

Currently the FPGA synthesizes 48 atomic counters, one

global time stamp counter (GTSC), and a set of power

measurement registers. All of these registers are memory-

mapped in the address space of each core.

SCC software includes RCCE, which is a lightweight

message passing library developed by Intel and optimized

for SCC [19]. It uses the hardware MPB to send and

receive messages. In this way, it avoids using the network

layer abstraction and the TCP/IP protocol overhead for

exchanging messages among different physical cores. At

the lower layer, the library implements two message pass-

ing primitives RCCE put and RCCE get. These primitives

move the data from a local buffer to the MPB of another

core and move the data back from a remote MPB to local

memory, respectively.

MPI

BMCFPGA

SCC

C

0

C

1

K
D
D

C

47

C

2

C

48

K
D
D

K
D
D

K
D
D

HW

SW
kernel

Module

apps

C

0

K
D
D

read_sensor
read_power

read msg

Shared

filesystem

MCPC

#

MSG

CPI,

Pow

Workloader

M

C

P

WL

stress
r

Data

Collector

F F F F change_freq

Frequency

loader

r

Post

Processing

or

ncy

r

Fig. 1. SCC measurement framework. The figure demonstrates the SW
components built for the SCC and the MCPC.

Figure 1 demonstrates the entire system setup including

the SCC and the MCPC, and also the monitoring framework

we have developed. On the SCC, we implemented the

utilities to track performance counters, collect and calibrate

thermal sensor data, collect power measurements, and log

the message traffic. On the MCPC, we implemented the

software to load the desired benchmarks and experimental

configurations to the SCC and the software to analyze the

collected data.

Software Modules Developed for the SCC:

• Monitor KDD: We developed a kernel module with two

kernel timers to sample the performance counters and the

temperature sensors. The module exports the collected

data into the user space. In comparison to instrumenting

the application code, our kernel module has the main

advantage of decoupling the core activity logging from

the application execution. In addition, the kernel timer

ensures low overhead for sampling the counters. We use

a sampling interval of 100ms in our experiments.

Temperature sensors have a dedicated kernel timer that

executes only in one core of each tile. We implemented

an alpha filter inside this timer to remove the sensor

noise. The thermal sensors are originally uncalibrated

in the SCC. Thus, the thermal sensor readings need to

be processed by software to provide meaningful data.

By measuring the core power consumption, the ambient

temperature, and the sensor output over a large variety of

workload, we extracted the calibration constant for each

sensor using a least square fit [2].

• read sensor: We wrote a user-space program that gath-

ers the performance counters and the tile temperature

readings from the KDD Monitor and saves them into

a log file. It executes every 100ms and has very low

overhead: 54us@ 533MHz and 75us@ 166Mhz for col-

lecting each sample. The trace collection can be trig-

gered and stopped by sending the signal SIGUSR1 to

the read sensor process. The read sensor program also

collects the GTSC counter values at the beginning and

at the end of its execution. The GTSC counter provides

a global time reference for all the cores and it is not

sensitive to frequency scaling. The OS timers on the SCC

have known accuracy issues in presence of frequency

changes. Thus, we use the GTSC value to measure the

benchmark execution time.

• read power: We designed another user-space program,

read power, to gather the power meter measurements

for the cores, the routers, and the memory controllers.

This program also collects the motherboard temperature.

These power and temperature values are collected by

accessing the dedicated memory mapped register in the

FPGA at every 1s interval. Note that the power meter

only provides the power reading for the SCC chip, and

power measurements at the tile or core-level are not

available.

• change freq: We designed a user-space program to

change the frequency of cores. This program executes

on the core the frequency change is applied. The new

frequency value is passed as a parameter and written in

the frequency control register of the specific tile. This

control register directly changes the tile clock divider.

• Message Logger: We modified the lower level

RCCE put and RCCE get routines in the RCCE li-

brary to log the number of messages sent and the

source/destination of each message. At the end of each

parallel thread the library generates a log containing

the communication matrix. Each element in the matrix

{mi,j} corresponds to the number of messages that corei
has sent to corej . In addition, we instrumented the RCCE

library to trigger the read sensor daemon to start logging

the performance counters at the beginning of each the

parallel thread and save the trace at the end of it.

Software Modules Developed for the MCPC:

• Stress files: These files contain the frequency vector

and the benchmark sequence for the tests. For each

benchmark, the stress file provides the name, number

of threads, and the cores to allocate the benchmark. The

app-loader and the frequency loader load the files on the

SCC to start the experiments.

• App-loader: We wrote a set of python scripts that run

on the MCPC. These scripts load the stress configuration

files and start the RCCE benchmarks in SCC.

• Frequency loader: This script first loads the stress file

that contains the frequency setting for each core in

the SCC. Second, it executes the change freq daemon

remotely in each SCC core to apply the new frequency

setting.

• Post-processing SW: We designed a SW module for

processing the collected data. This script interfaces with

the app-loader and the frequency loader to receive the

experimental setup. For each benchmark, the script col-

lects the logs and parses them to extract useful statistics.

The module contains a front-end component written in

Python and a back-end part written in Matlab, allowing

the implementation of complex analysis functions. The

post-processing SW enables extracting empirical models

that correlate frequency changes with performance, en-

ergy, and temperature through mining a vast amount of

data.

In this paper, we use the monitoring infrastructure

described above for analyzing the impact of frequency

changes on energy efficiency on the SCC. The framework

can also be leveraged for enabling runtime management

policies on the SCC computer.

IV. APPLICATION SPACE

We utilize a set of benchmarks to assess the performance

of the SCC under a variety of operating conditions. In

addition to expanding the benchmarks provided by Intel,

we design several microbenchmarks to stress different parts

of the system. We select the following application and

synthetic benchmarks as they provide a heterogeneous set

of performance data to use during analysis and creation of

our model.

Intel benchmarks:

• Share: Tests the off-chip shared memory access.

• Shift: Passes messages around a logical ring of cores.

• Stencil: Solves a simple PDE with a basic stencil code.

• Pingpong: Bounces messages between a pair of cores.

• NPB: NAS Parallel Benchmarks, LU and BT.

Custom-designed microbenchmarks:

• Bcast: Broadcasts messages from one core to all other

cores.

• DRAM: Executes an ALU operation on a circular

buffer in memory. At each iteration a read-write is

performed for one entry of the circular buffer. The

dimension of circular buffer is 4MB.

• L1 and L2: Have the same principle as the DRAM

benchmark. Circular buffer size for L1 is 16KB and

buffer size for L2 is 32KB.

Table I categorizes the Intel benchmarks based on IPC,

L1 instruction misses, number of messages, and execution

time. All parameters are normalized with respect to the

number of instructions executed to enable a fair compar-

ison. Each benchmark in this categorization runs on two

neighbor cores on the SCC (only 2 cores active). We

observe that Share does not have messages and is an ex-

ample of a memory-bounded application. Shift represents a

message intensive application and Stencil represents a high-

IPC application. Finally, Pingpong is a low-IPC application

with a large number of L1 cache misses. Note that Stencil,

TABLE I
BENCHMARK CATEGORIZATION

Benchmark L1CM Time Msgs IPC
Share High High Low Low
Shift High Low High Medium

Stencil Low Low Low High
Pingpong High Medium Medium Low

Shift, Share, and Pingpong benchmarks all rely on the

blocking send / receive calls from the RCCE API.

We designed the Broadcast (Bcast) benchmark based on

Pingpong, which sends messages among cores and test

latencies. Instead of having a source and a single destination

as in Pingpong, Bcast sends messages from a single core to

multiple cores. DRAM, L1 and L2 benchmarks are custom-

designed applications that do not use the RCCE library. We

use these memory benchmarks to compare the execution

time of memory-intensive (DRAM) or cache-intensive (L1

and L2) applications in our analysis and to analyze the

tradeoffs under frequency scaling. The benchmarks are run

with the following configurations to cover a wide range of

workload scenarios.

• Intel benchmarks: Stencil, Shift, Share, and Pingpong

benchmarks run on pairs of cores in the following

configurations:

– 0-hop: Cores on the same tile. (e.g., cores 0-1)

– 1-hop: Cores on neighboring tiles (e.g., cores 0-2)

– 2-hops: Cores on tiles that are 2-hops distance

away (e.g., cores 0-4)

– 3-hops: Cores on tiles that are 3-hops distance

away (e.g., cores 0-6)

– 8-hops: Cores on corners (e.g., cores 0-47)

We run either a single pair (2 cores active) or con-

currently run 24 pairs for each benchmark (48 cores

active) in the experiments with Intel benchmarks.

• NPB: The LU benchmark runs on 32 cores and the BT

benchmarks runs on 36 cores. These choices are due

to restrictions with LU and BT software preventing

execution on all 48 cores.

• Bcast: The Bcast benchmark is run with 1 core sending

messages to N cores (1 ≤ N ≤ 47).

• DRAM, L1, L2: Our custom-designed memory bench-

marks are single-threaded benchmarks. We run 48

instances on 48 cores.

V. EXPERIMENTAL EVALUATION

This section provides the results of our analysis. First

we carry out a test to highlight how different bench-

marks behave under frequency perturbation. For this ex-

periment, we execute each of the Intel benchmarks on

two cores of the SCC. One of the cores (coreA) is al-

ways Core0 (corner core) while the second one (coreB)

moves step by step towards the opposite corner from

1-hop distance to 8-hop distance in the SCC floorplan.

Then for each of these configurations we perturb fre-

quency of the tiles of the running cores to generate the

following frequency patterns: {tileA, tileB}: {fmin, fmin},

{fmax, fmin},{fmin, fmax},{fmax, fmax}. In our experi-

ments, fmax is 533 MHz and fmin is 166 MHz. These

choices for fmax and fmin were made considering the

stability of the SCC system.

During each run, we probe the (1) execution time over-

head, (2) the full chip power saving, (3) the energy saving,

(4) instructions per second (IPS), (5) message density, and

(6) memory access density. For the first three metrics,

the baseline has the {fmax, fmax} setting and coreA is

adjacent to coreB . The message density is computed as

the number of messages sent and received by a given core

divided by the total number of instructions, whereas the

memory access density is computed as a ratio of the non-

cacheable memory read performance counter over the total

number of instructions1.

In Figure 2 we show the results of the stress patterns

for nearest and farthest position of coreB (denoted with

“near” and “far”). Bcast is an asymmetric benchmark,

meaning the communication direction is always from a

source core to a destination, and has a high message density.

In contrast to the other benchmarks, the performance loss

when only one core has lower frequency while running

Bcast is significantly lower when coreB (the destination

core) is slowed down. This is not the case for the other

benchmarks, as other benchmarks include bidirectional

communication among cores. In addition, Bcast strongly

benefits from running both cores at the same frequency,

as the execution time overhead and the energy are lower

compared to running cores at different frequencies. Note

that as we do not scale the voltage of the cores, we do

not observe energy savings when both the cores run at the

minimum frequency.

Pingpong and Share show similar trends even though

they are significantly different applications. Their execution

times have lower sensitivity to frequency changes compared

to other benchmarks. For Share, this effect can be explained

looking at IPS, which is lower compared to the other

benchmarks. Also, the memory read access statistics show

that Share is memory-bound.

Shift has high message density and, similar to Bcast,

its execution time strongly depends on the core frequency.

Stencil, on the other hand, has low memory access density

and high IPS. Stencil’s throughput decreases significantly

as we scale down the frequency of one core. In addition,

similar to Share, Stencil’s execution time increases when

running on cores far from each other. This increase is

mainly due to the usage of the shared memory buffers

allocated off-chip (for Share) or in the MPB (for Stencil).

For Stencil, increasing the distance reduces the throughput

(IPS) considerably. The slow-down saturates when just one

core runs at low frequency. In this case, scaling down the

other core does not affect the execution time as Stencil uses

barrier synchronization.

We observe that all the benchmarks benefit from having

the core frequencies equalized. In fact, for most of the

benchmarks we see significant energy savings when moving

1Note that SCC does not include a performance counter to track the
L2 miss rate. We tested the memory read performance counter with
microbenchmarks and verified that there is a strong correlation with off-
chip memory access.

from only one core operating at low frequency to both cores

operating at lower frequency. An unbalanced frequency

configuration can lead up to 2x energy efficiency loss.

This analysis highlights the importance of predicting the

impact of a generic frequency perturbation on the execution

time of a parallel benchmark. In addition, it suggests that

message density, IPS, and frequency can be utilized to

estimate the changes in execution time. Following this

intuition, we generate a data set by running each of the

Intel benchmarks separately in all the cores of the SCC (i.e.,

each benchmark with 24 pairs on 48 cores). We also run

Bcast (1-to-47 cores), our memory microbencmarks, and

the NPB benchmarks. We run all the applications at a wide

range of frequency settings, including all cores at max/min

frequency and checkerboard patterns. The collected data

have five columns: execution time overhead compared to

1-hop case when all the cores are running at maximum

frequency; a vector of core frequency settings; IPS; the

message density; and the weighted average of the frequency

settings of the communicating cores2.

We then use half of this data-set to train four neural

networks (NNs). For all the four NNs, execution time is

the target output to be predicted. The first NN takes only

the frequency vector as input. The second takes frequency

vector and IPS. The third NN takes frequency vector, IPS,

and the message densities. Finally, the fourth NN takes

frequency, IPS, the message densities and the weighted

average frequency of the communicating cores as inputs.

We choose a two layer NN topology with tansig and purelin

activation functions for the first and second layer[5]. We

check the performance of the network against a linear multi-

variable model (demonstrated as Lin) under two validation

data-sets: The first data-set (Mix) contains the other half of

the original data-set whereas the second one (NPB Only)

contains only the NPB benchmarks. This second data-set

with NPB benchmarks is useful to evaluate the prediction

performance of the network for real-life-like workloads.

TABLE II
ACCURACY OF THE PERFORMANCE PREDICTORS.

R-SQUARE
INPUT Mix data-set NPB Only

NN Freq. 0.42 0.01
NN Freq., IPS 0.59 0.01

NN Freq,IPS,MSG 0.83 0.09
NN Freq,IPS,MSG,MSGFREQ 0.87 0.80

Lin 0.44 0.18

Table II shows the residuals for the four NN and the

linear fit computed on the two validation data-sets. Low

residual values correspond to lower accuracy predictions

whereas a value of 1 in the residual means a fully accurate

prediction. The table shows that the message density infor-

mation improves the prediction performance significantly;

however, it is not sufficient for highly parallel and more

realistic benchmarks (i.e., NPB data-set). We see that it

is important to consider not only the overall number of

messages received but also the frequency of the sender

2The weighted average for the ith core is the sum of the core
frequencies weighted by the number of messages sent by each core to
the ith core.

0

100

200

300

0

25

50

−200

−100

0

0

1.6x10

3.2x10
9

0

3.4x10

6.8x10
−3

0

0.0362

0.0724

A:Low B:Low
A:Low B:high
A:high B:low
A:high B:high

Shift StencilBroadcast Pingpong Share

FarNear

Memory read access density

Message Density

Instructions per Second

Energy Saving [%]

Power Saving [%]

Execution Time overhead [%][%]

[%]

[%]

9

−3

Benchmark Parameter Measurements

Fig. 2. Sensitivity of the Intel SCC benchmarks to frequency scaling.

core. This analysis verifies that the number of messages and

the sender core’s performance cannot be neglected while

predicting overall application performance. As a result, the

communication patterns and message densities should be

included in DVFS performance optimization on many-core

systems with MPI.

VI. CONCLUSION

In this paper, we have introduced an infrastructure to

accurately track performance, power, and temperature of

the SCC at runtime with very low performance overhead.

We then used this framework to analyze the impact of fre-

quency changes on the performance for many-core systems

with MPI. We designed a large set of experiments using

the monitoring infrastructure. Our analysis demonstrates

that the communication patterns have a significant impact

on performance and energy efficiency, varying from 0.1x

to 2x, compared to the baseline case without frequency

perturbations. We also show that accurate performance

prediction for many-core systems with MPI needs to take

core performance and message traffic into account. We

believe our infrastructure and results will provide guidelines

for designing runtime management policies for many-core

systems with MPI.

ACKNOWLEDGEMENTS

This work was in part supported by the EU FP7 Projects Pro3D (GA n.
248776) and Therminator (GA n. 248603). J. N. Furst has been funded
by the Undergraduate Research Opportunities Program (UROP) at Boston
University.

REFERENCES

[1] A. Alameldeen and D. Wood. Ipc considered harmful for multipro-
cessor workloads. Micro, IEEE, 26(4):8–17, july-aug. 2006.

[2] A. Bartolini et al. A system level approach to multi-core thermal
sensors calibration. In PATMOS’11, pages 22–31, 2011.

[3] A. Bhattacharjee and M. Martonosi. Thread criticality predictors
for dynamic performance, power, and resource management in chip
multiprocessors. SIGARCH Comput. Archit. News, 37:290–301, June
2009.

[4] K. Choi, R. Soma, and M. Pedram. Dynamic voltage and frequency
scaling based on workload decomposition. In ISLPED ’04, pages
174–179, 2004.

[5] H. Demuth, M. Beale, H. Demuth, and M. Beale. Neural network
toolbox for use with matlab, 1993.

[6] G. Dhiman and T. S. Rosing. Dynamic voltage frequency scaling for
multi-tasking systems using online learning. In ISLPED ’07, pages
207–212, New York, NY, USA, 2007. ACM.

[7] K. Flautner and T. Mudge. Vertigo: automatic performance-setting
for linux. In OSDI ’02, pages 105–116.

[8] J. Howard et al. A 48-core ia-32 processor in 45 nm cmos using on-
die message-passing and dvfs for performance and power scaling.
Solid-State Circuits, IEEE Journal of, 46(1):173–183, jan. 2011.

[9] C. Isci, G. Contreras, and M. Martonosi. Live, runtime phase mon-
itoring and prediction on real systems with application to dynamic
power management. In MICRO 39, pages 359–370, Washington,
DC, USA, 2006. IEEE Computer Society.

[10] H. Jung and M. Pedram. Supervised learning based power manage-
ment for multicore processors. Trans. Comp.-Aided Des. Integ. Cir.
Sys., 29:1395–1408, September 2010.

[11] N. Kappiah, V. W. Freeh, and D. K. Lowenthal. Just in time dynamic
voltage scaling: Exploiting inter-node slack to save energy in mpi
programs. In SC ’05, pages 33–. IEEE Computer Society, 2005.

[12] G. Keramidas, V. Spiliopoulos, and S. Kaxiras. Interval-based
models for run-time dvfs orchestration in superscalar processors. In
CF ’10, pages 287–296, New York, NY, USA, 2010. ACM.

[13] W. Kim, M. Gupta, G.-Y. Wei, and D. Brooks. System level analysis
of fast, per-core dvfs using on-chip switching regulators. In High
Performance Computer Architecture, 2008. HPCA 2008. IEEE 14th
International Symposium on, pages 123–134, feb. 2008.

[14] Y. Kim, J. Choi, A. Sivasubramaniam, J. Srebric, Q. Wang, and
J. Lee. Modeling and managing thermal profiles of rack-mounted
servers with thermostat. In Proceedings of IEEE 13th International
Symposium on High Performance Computer Architecture, pages
205–215, feb. 2007.

[15] D. Li et al. Power-aware mpi task aggregation prediction for high-
end computing systems. In IPDPS ’10, pages 1–12, april 2010.

[16] K. Ma, X. Li, M. Chen, and X. Wang. Scalable power control
for many-core architectures running multi-threaded applications.
SIGARCH Comput. Archit. News, 39:449–460, June 2011.

[17] A. Mishra, S. Srikantaiah, M. Kandemir, and C. Das. Cpm in cmps:
Coordinated power management in chip-multiprocessors. In SC ’10,
pages 1–12, nov. 2010.

[18] P. Salihundam et al. A 2 tb/s 6, times, 4 mesh network for a single-
chip cloud computer with dvfs in 45 nm cmos. Solid-State Circuits,
IEEE Journal of, 46(4):757–766, april 2011.

[19] R. F. van der Wijngaart, T. G. Mattson, and W. Haas. Light-weight
communications on intel’s single-chip cloud computer processor.
SIGOPS Oper. Syst. Rev., 45:73–83, February 2011.

