
Approximating Checkers for Simulation Acceleration
Biruk Mammo∗, Debapriya Chatterjee∗, Dmitry Pidan†, Amir Nahir†, Avi Ziv†, Ronny Morad†, Valeria Bertacco∗

∗University of Michigan
{birukw,dchatt,valeria}@umich.edu

†IBM Research Lab, Haifa
{pidan1,nahir,aziv,morad}@il.ibm.com

Abstract—Simulation-based functional verification is the key
validation methodology the industry. The performance of logic
simulators, however, is not sufficient to attain acceptable verifi-
cation coverage on large industrial designs within the time-frame
available. Acceleration platforms are a valuable addition to the
verification effort in that they can provide much higher coverage
in less time. Unfortunately, these platforms do not provide the
rich checking capability of software-based simulation.

We propose a novel solution to deploy those complex check-
ers, typical of simulation-based environments, onto acceleration
platforms. To this end, checkers must be transformed into syn-
thesizable, compact logic blocks with bug-detection capabilities
similar to that of their software counterparts. Our “approximate
checkers” trade off logic complexity with bug detection accuracy
by leveraging novel techniques to approximate complex software
checkers into small synthesizable hardware blocks, which can
be simulated along with the design on an acceleration platform.
We present a general checker taxonomy, propose a range of
approximation techniques based on a checker’s characteristic
and provide metrics for evaluating its bug detection capabilities.

I. INTRODUCTION

Functional verification is a central component of digital
design development, requiring a great deal of engineering re-
sources and time. One of the mainstream verification method-
ologies entails using a logic simulator (a software application)
that simulates the behavior of a design implemented in a
hardware description language (Verilog or VHDL). A test-
bench provides stimuli to the design under verification (DUV),
while a mix of embedded checkers, typically developed in a
high-level language (Vera [1], e [10], C++, etc.), monitors
the correctness of the DUV’s activity. In simulation, the
ability to observe and control any signal within the design
allows close monitoring of the design’s activity and provides
comprehensive diagnosis capabilities.
Unfortunately, this methodology is severely limited by the

vast complexity of modern digital designs. Longer and more
complex regression suites are required to explore meaningful
aspects of a design and yet, simulation speed degrades with
increasing design size. As a result, significant portions of a
design’s state space are left unexplored during simulation. Al-
ternative simulation/execution platforms, namely acceleration-
based verification [17], [11], emulation [6], [16] and post-
silicon validation [3], [7], are starting to attract more interest
because of the performance boost they can provide. Among
these, hardware simulation accelerators consist of large ar-
rays of customized ASIC processors designed specifically to
simulate basic logic components concurrently. To target such
platforms, a DUV must first be synthesized into a structural
netlist, which is then mapped to the platform. In current
industry practices, the testbench remains on the host computer
and controls the simulation running remotely on the acceler-
ation platform (Figure 1). Selected signals are logged on the
platform itself and periodically off-loaded to the host where
they are checked by a number of software checkers to establish

978-3-9810801-8-6/DATE12/ c©2012 EDAA

Acceleration platform:

Sea of FPGAs or proprietary HW blocks

DUV

mapped to hw

Host:
Analyzes traces

Includes SW checkers for traces

Low$bandwidth

DUV
Embedded HW checkers:

HW checkers

TRADITIONAL ACCELERATION FLOW

PROPOSED ACCELERATION FLOW

SW checkers

operate in

post"processing

Acceleration platform

DUV

mapped to hw
Embedded HW checkers:

Low area profile

Operate at runtime

Trade$off area with accuracy

HW checkers

operate at runtime

Fig. 1: Proposed solution overview. Traditional acceleration solu-
tions rely on off-platform checkers running on remote host, requiring
the transfer of logged data via a low-bandwidth link. Our solution
proposes to embed checkers on platform for high performance check-
ing. Our checkers must have a small logic profile while maintaining
detection accuracy comparable to their host-based counterparts.

the functional correctness of the simulated design. Often the
logging and off-loading activities become the performance
bottleneck of the entire simulation.
To address this issue, recent research has shown promise

in performing the stimulus generation part of the testbench
directly on the acceleration platform [4]. Since test generation
and checking are the yin and yang of verification, the software
checkers should also be synthesized and embedded directly
into the acceleration platform to fully unlock the advantages of
acceleration by virtually eliminating the data transfer between
host and platform. However, mapping checkers, particularly
those utilizing behavioral golden models or complex software
data structures, remains a challenge because (i) embedded
checkers can only use synthesizable constructs, (ii) their logic
complexity should not exceed the platform capacity and (iii)
the performance impact incurred by the simulation of their
logic components should not bring the acceleration perfor-
mance down to that of a traditional off-line checking approach.
An ideal embedded checker would be sufficiently small not
to significantly impact the performance of simulation, while
it would be functionally rich enough to provide meaningful
value in correctness checking, and hence be a good substitute
for a host-based software checker. To this end, we pro-
pose to develop embedded “approximate checkers”: checkers
embedded in the acceleration platform, compact enough to
be transparent to acceleration performance, yet capable of
detecting a significant fraction of a bug’s manifestations.

Contributions: The primary objective of this work is to
capture the design intent of a complex software checker into
a compact hardware version that can be mapped along with
the DUV onto an acceleration platform (see Figure 1). We
propose a number of approximation techniques to reduce the
logic overhead of the checker while preserving most of the
checking capabilities of its software counterpart. We provide
a taxonomy for common classes of checkers; we use these
classes to reason about the effects of our approximation
techniques in the absence of specific design knowledge.

The approximation process may lead to the occurrence of
false positives, false negatives and/or delays in the detection
of a bug. To properly analyze these effects we provide metrics
to evaluate the quality of an approximation, and present two
case studies to demonstrate our proposed solutions. Evaluation
of our case studies indicate that we can achieve a reduction
of approximately 60% in overall logic complexity with a
negligible impact on checker quality.

II. RELATED WORK

A rich choice of solutions is available for the validation of
high-level behavioral models of digital designs, spanning both
constrained test generation and formal property verification,
enabling designers to specify complex assertions/checkers and
expose bugs. Correspondingly, a wide range of languages
exist to describe the structure and concepts needed: e, Vera,
SystemVerilog, C++, etc.. Several research works in the past
decade have focused on the efficient synthesis of formal as-
sertions into realizable hardware descriptions [2], [14]. These
techniques target specifically acceleration, emulation or in-
silicon debug [8], [9]. Reconfigurable designs for debug archi-
tectures that enable verification engineers to create assertion
checkers, transaction identifiers, triggers, and event counters
in silicon have also been suggested [3]. However, assertion
synthesis is an exact translation of individual properties and
can generate extremely complex logic blocks, which can
reduce or eliminate the acceleration advantage. In this work
we focus on containing the logic overhead of the embedded
checkers using approximation.
On the front of off-platform analysis, emulation platforms

support tracing and off-loading of a selected group of signals
[21], which can later be processed by a software checker.
However, in this setup, the testbench still executes in software
and communicates with the emulator via a fast bus connector,
which is often a bottleneck [16]. In contrast, transaction-
based acceleration (TBA) [19] is a paradigm in commer-
cial simulation accelerators where the testbench itself has a
software-hardware boundary and all interactions with the host
are at the transaction-level, thus reducing the amount of data
transferred between host and emulation platform. Best results
are achieved when large components of the testbench are
mapped to hardware [16].
Finally, approximation of logic functions has been proposed

in other related domains, including binary decision diagrams
(BDD) [18], timing speculation [15] and typical-case optimiza-
tion [5], [12].

III. CHECKER TAXONOMY

Our experience with several designs suggests that most
checkers are intended to verify a similar set of design prop-
erties. Based on this observation, we present the following
checker classification scheme:

Protocol Checkers: verify whether the DUV interfaces adhere
to the protocol specification. An example is a checker that
monitors the request-grant behavior for a bus arbiter checking
that the arbiter sets the grant signal within a fixed number of
cycles from receiving a request, or that it never issues a grant
when some other requester owns the bus.

Control Path Checkers: verify whether the flow of data
within the DUV progresses as intended. An example control
path checker is one that monitors I/O ports of a router to

check whether a packet accepted at an input port is eventually
transmitted through the correct output port.

Datapath Checkers: verify whether data operations produce
expected results. A datapath checker for an ALU, for example,
verifies that the result of an addition operation is the sum of
its operands.

Persistence Checkers: verify whether or not data items stored
in the DUV remain uncorrupted. For example, a checker for
a processor’s register file may check that the contents of each
register never change except upon a write command.

Priority Checkers: verify whether specified priority rules are
held. A priority rule sets the order in which certain operations
are to be performed, usually selected from some queue.
Consider, for instance, a unified reservation station in an out-
of-order processor that must prioritize addition operations over
shift operations. A priority checker for this unit verifies that
no shift operation is issued when additions are waiting.

Occupancy Checkers: verify that buffers in the system do
not experience over- or under-flow. For example, an occupancy
checker may verify whether a processor dispatches instructions
into its reservation station only when there is space available.

Existence Checkers: verify whether an item is present in a
storage unit. In a processor cache, for example, an existence
checker could verify whether the tag for cache access hit
actually exists in the tag array of the cache.

IV. APPROXIMATION TECHNIQUES

To check for correctness, a checker may need to maintain
information about the expected internal state of the design for
extended periods. Thus, direct mapping of a software checker
to hardware, when even possible, often leads to an extremely
complex circuit block, possibly as large or larger than the
design itself. Often the checker hardware could be simplified,
targeting only functionality rather than also performance or
power. For instance, a simple ripple-carry adder is sufficient
for a datapath checker that verifies a Kogge-Stone adder.
Below, we propose a number of approximation techniques to
minimize the complexity of embedded checkers.

Boolean Approximation: can be used to reduce the complex-
ity of any combinational logic block. The don’t care set of the
Boolean function implemented by the block can be augmented
by simply changing some outputs from 1 or 0 to don’t care (in-
dicated by X). By appropriately selecting which combinations
become don’t cares, it is possible to greatly reduce the number
of gates required for the function. An example is shown in
Figure 2, where two minterms are set to don’t care (highlighted
by hashing), reducing the 2-level function’s implementation
from 6 to 4 gates. Boolean approximation often allows great
reductions in circuit complexity with a minimal amount of
don’t care insertions. The transformation may lead to false
positives or negatives for the checker: a 0 approximated to a
1 would lead to a false positive, and vice versa. Note that it is

T F T T

T T F F

T F T T

T T T F

x0x1 x0x1 x0x1 x0x1

x2x3

x2x3

x2x3

x2x3

T F T T

T T F F

T X T T

T T T X

Original function Approximate function

x0x1 x0x1 x0x1 x0x1

x2x3

x2x3

x2x3

x2x3

Fig. 2: Boolean approximation. Replacing some output combina-
tions with don’t cares reduces the 2-level function implementation.

possible to apply the technique to a sequential logic checker
by unrolling the combinational portion and then approximating
the logic block obtained.

State Reduction: Embedded checkers may include storage
elements for a wide variety of purposes. State reduction
eliminates some of the non-critical storage to simplify both
the sequential state and the corresponding combinational logic.
Examples of non-critical storage are counter bits used for
checking timing requirements of events at fine granularity and
flip-flops for storing intermediate states in a checker’s finite
state machine (FSM). Figure 3 shows a portion of a protocol
checker’s FSM that verifies whether a signal is set for exactly
one cycle. The “DELAY” state can be removed and the check
is then performed in all the states following the “NEXT” state.
Even though the checker can no longer measure precisely

the one cycle delay, it can still verify that the signal is only
set for a finite number of cycles. This technique is particularly
valuable for checkers containing a reference model of correct
behavior. Indeed, for these checkers to operate correctly, the
reference model’s response must arrive before the design’s
response. A delay-removing an approximation would allow the
checker to compute an estimate before the design’s response.
State reduction may also introduce false detections, either
positive or negative.

WAIT

DELAY

NEXT

signal
high

signal
low

delay for
one cycle

check
if signal

is still high

WAIT NEXT

signal
high

check check

some
cycles
pass

signal
low

1 cycle
passes

Original FSM Approximate FSM

Fig. 3: State reduction approximation for a protocol checker. The
delay state is removed leading to an approximate checking of events
timing (duration of signal high).

Sampling and Signatures: The width of a datapath affects
many aspects of a design, including the width of functional
units’ operands and of storage elements. To reduce the amount
of combinational logic and storage required to handle wide
data, an approximate checker can operate either with a sub-
set of the data (sampling) or a smaller size representation
(signature) derived from the data. Bit-fields, cryptographic
hashes, checksums, and probabilistic data structures are valu-
able signature-based approximations, trading storage size for
signature computation. A checker for an IPv4 router design,
for instance, does not need to track all the data bytes of
packets entering the system. In most cases, storing the control
information and an XOR signature of the data is sufficient for
checking purposes (see Figure 4). This approximation may
result in both false positives and false negatives. As we show
in Section VI-B, one can reasonably estimate the impact of
these techniques, given the probability distribution of the data
payloads and the nature of the design.

. . . data
byte 0

data
byte 1

data
byte n�1

20 bytes � 65535 bytes

11 bytes

dest source header
checksum header

Fig. 4: Signature approximation for an IPv4 packet. A packet can
be uniquely identified with high probability by using just a few bytes.

TABLE I: Approximation to checker matrix. Boolean approxima-
tion and state reduction are generic methods applicable to all.

Boolean State Reduction Sampling Signature
Protocol X X

Control Path X X X X

Datapath X X X X

Persistence X X X X

Priority X X X X

Occupancy X X

Existence X X X

The checker classes presented in Section III allow us to
evaluate our proposed approximation techniques on a number
of checkers without concern of the DUV’s implementation
details. Table I summarizes the results of this evaluation.
Note that Boolean approximation and state reduction are
general techniques applicable to all the classes of checkers. In
contrast, sampling and signatures have limited scope as they
are only appropriate for situations where monitoring a subset
of possible events/combinations enables a detection.

V. APPROXIMATION QUALITY METRICS

An approximate embedded checker may be more relaxed or
more restrictive than its original software counterpart. Thus,
depending on the time and ways of a bug’s manifestation,
detection in the approximate checker may occur (or not) as in
the original checker – true positive (TP) or negative (TN); the
bug may be missed by the approximate checker only – false
negative (FN); or the approximate checker may falsely flag
the occurrence of a bug – false positive (FP). In this context,
it is important to evaluate the relative detection capability of
an approximate checker with respect to the original. A good
approximate checker should have a small rate of false positives
and negatives. If the post-simulation diagnostic methodology is
capable of ruling out false positives, then a high false positive
rate would not be a critical issue for the approximate checker.
We propose to evaluate the quality of an approximate checker
with two common statistical metrics deployed in the evaluation
of binary classification tests [13]: accuracy and sensitivity. For
proper classification, each test has to be run either until a bug
is detected (correctly, or wrongly) or until completion.

Accuracy (TP+TN

TP+FP+FN+TN
) measures how accurate an ap-

proximate checker is in reproducing the results of the original
checker. A high value exhibits only a few false positives and
negatives.

Sensitivity (TP

TP+FN
) evaluates the ability of a checker in

detecting actual bugs (true positive rate). A high value of
sensitivity indicates that most bugs that are detected by the
original checker are also detected by the approximate checker.

When interpreting accuracy and sensitivity many additional
aspects must be taken into account, including the input test
vectors, the type of DUV, the class of the approximated
checker, and the nature of the bugs. The next section presents
two case studies to illustrate these aspects and their impact.

VI. CASE STUDIES

We conducted cases studies on two experimental de-
signs used for training verification engineers in industry and
academia. One is a calculator design, similar in principle to a
microprocessor with a restricted instruction set. The other is
a 4x4 router design for a packet-switched network, capturing
many elements of a typical network-on-a-chip (NoC) router.

Both designs include high-level software checkers which we
manually translated into hardware descriptions to investigate
the impact of our approximation techniques. These designs are
smaller than industrial size designs, but they contain enough
properties to be verified using checkers that span over all
classes discussed earlier.

A. Calculator Design

Calculator 3, aka calc3, is used as an example in [20]. The
design accepts add, subtract, shift, branch and register load and
fetch commands from its four command ports, operates on its
16 32-bit wide internal registers, and responds with results
through its four response ports. A successful branch makes
calc3 skip the command following the branch on the same
input port. calc3 supports up to 4 pending commands per
port and out-of-order completion of commands, as long as
there are no data hazards. Each command is associated with
a unique 2-bit tag, reported when the command completes,
along with 2 status bits indicating successful completion, a
skipped command, or an overflow from addition/subtraction.
Only the fetch-register command outputs data from the design.

The baseline black-box checkers for calc3 were created
by manually translating a high-level C++ software testbench
into a Verilog description. Each port has a separate black-
box checker ensemble working in the context of a common
shadow register file, which maintains copies of the values that
should be in calc3’s register file. The main components
of the checkers for each port are shown in Figure 5 and
they fall within four classes from Section III: a protocol
checker, monitoring for correct tags and commands values;
a control path checker, monitoring correct branch behavior
and overflow/underflow result handling; a datapath checker,
checking correct fetch and computation results; and a priority
checker tracking data hazard constraints.
We used sampling as the main approximation technique

for all checkers. The output checker and duplicate execution
units were approximated by sampling a subset of the 32 bits
for each operand. The approximated datapath for the output
checker operates on the least significant 8 bits of data, except
the comparator, which uses all 32 bits. This exception was
necessary to ensure that branch decisions remained accurate.
However, sampling leads to logic reduction in arithmetic-
heavy execution units. Note that this scheme cannot detect
overflows on its own; hence the approximate checker relies

cmd tx tag
For all pending commands

If age(cmd)>age(resp)

d(cmd)!=r(resp) & r(cmd)!=r(resp)

& d(resp)!=r(CT)

response event from port n

(B) Priority Checker

To Reg File

(C) Output Checker

Read

Access

branch
status

M
U

X

value

Write

Enable

cmd d1 d2 r1 data age

Command
Transactor

(A) Protocol Checks

tag status dataMUX

cmd d1 d2 r1 data age

+ , << , >=

Execution

units

To Reg File

Write

Access

Approximated

Approximated

destination register

From Reg Filevalue

request event
on port n

Fig. 5: calc3 checker ensemble for one port. The checkers track
tags (protocol), dependencies (priority) and computations (datapath
and control). Since calc3 does not output the results of arithmetic
operations, these must be checked via a fetch-register command.

on the status bits of a response to learn about overflows and
could potentially miss related bugs (false negatives).
The priority checker is also amenable to sampling, where

a completing command can be checked for priority violations
only with respect to one out of four pending commands. This
reduces the logic needed to implement the checker to approx-
imately one fourth. Since incoming commands are mapped to
different slots in the transactor based on current occupancy,
there is a significant probability that a violating command is
present in the slot being checked. Even though this is a weaker
check than the original, a bug causing priority violations will
still be detected with sufficient simulation runs. The command
transactor (a protocol checker) was not approximated since
the other checkers depend on its accuracy and even a slight
approximation would introduce many false positives.
A significant amount of logic reduction can also be achieved

by taking advantage of the fact that, unlike the software
version, the checker resides in hardware, next to the DUV,
where wire connections can be made directly to the DUV’s
components at virtually no cost. For instance, we can avoid
maintaining a shadow register file by simply checking dynam-
ically that the values to be written match with those computed
by the checker. Thus, the shadow register file can be replaced
by shared read ports with the design’s internal register file and
a register-write checker that checks the least significant 8 bits
of register values to be written.

B. Router Design

Router is a VHDL implementation of a 4x4 router used
internally at IBM for training new employees. It can accept
variable-length packets from any of its four input ports and
routes them to one of its four output ports based on entries in
its statically configurable routing table. This is accomplished
through a set of request, grant, ready, ack, nack, and command
signals that connect to other routers or a configuration host.
All router packets are composed of a source address byte,
a destination address byte, up to 60 bytes of data, and a parity
byte (bitwise XOR of all the bytes in the packet). Up to 16
incoming packets, not exceeding a total of 256 bytes, can be
buffered at each of router’s input ports. Router rejects
packets whose destinations do not exist in the routing table,
whose parity is bad, or when there is not enough space in
the input buffers. In addition, the interface signals must obey
timing constraints as provided in the protocol specifications.
Router comes with a complete software checker environ-

ment designed in e. To investigate the effects of approximation,
we manually developed an optimized but complete hardware
version of the e environment. The architecture of the checker
design is shown in Figure 6. The properties verified by
the checkers are summarized below, based on the classes
presented in Section III: a protocol checker, monitoring for
correct timing and validity of a number of control signals
(req, gnt, rdy, ack, nack); a control path checker, tracking
validity of outgoing packets; a datapath checker, checking
correct parity computation; a persistence checker to detect
data corruption in input buffers and routing table; a priority
checker, monitoring correct ordering of outgoing packets and
output port mappings; an occupancy checker checking for
input buffer overflows; and an existence checker, tracking the
existence of entries in the input buffers and the routing table.
There could be situations in the router verification en-

vironment where a single checker implementation verifies

router

routing table

output

unit

input

unit

buffers

x4 x4

request
data

data_ready
grant

ack
nack

request

grant

data
data_ready

ack
nack

input

checker

(Protocol)

signals correct?

x4

output

checker

(Protocol)

signals correct?

x4

routing table checker
(Existence)
destination exists?

flow checker (Control, Data,
Persistence, Occupancy,
Priority, Existence)
packet flow ok?

cmd_ready rt_ready
cmd

buffer
full

destination
address

output
port

output
packets

input
packets

states
reduced states

reduced

sampled
entries

only packet
signatures

Fig. 6: Hardware checkers for router. The checkers track packets
(several classes), I/O signals (protocol), routing table (existence).

multiple properties or vice versa. For example, a checker
verifying that a packet transmitted through an output port is
valid (control path) also checks that the routing table provides
the correct mapping for the destination address (priority and
existence). The input and output checkers in Figure 6 mainly
consist of protocol checks. The flow checker is responsible for
maintaining router’s buffers and most of the control path,
persistence, priority, and occupancy checkers are within this
module. It lets the input checker know if the buffer for an input
port is full. The routing table checker verifies the existence of
output port mappings in the routing table and predicts whether
router would accept or reject a packet.
The state reduction, sampling, and signature techniques

were investigated for this case study. Using the state reduction
approach, a combined total of 40 states and 88 counter bits
were eliminated from the input and output protocol checker
units. This approximation is unlikely to cause false positives
but might produce false negatives. The routing table is ap-
proximated with a sampling technique where only the 4 most
significant bits (out of 8) of the destination and the mask are
stored. This reduces storage requirements of the routing table
by 44%. The existence check that utilizes the reference table
should still be able to correctly detect when a destination
actually exists in the routing table (true positive). However,
due to the loss of half the information content, it may wrongly
assume that a destination exists in the table when it does
not (false positive). For a purely random input pattern, this
existence checker will raise false positives half of the time.
This fraction could be lower if the test inputs to the routing
table were constrained to follow a specific pattern.
The signature approximation applied to the flow checker

includes only the length of the packet (6 bits), the source and
destination addresses and the parity, and it has a collision
probability of 2

−30; sufficient for our design, which can
have at most 64 packets in flight. This approximation alone
corresponds approximately to 31% of the router logic.
Reducing the packet signature further by removing source and
destination addresses saves us about 32 bytes of storage overall
while increasing the collision probability to only 2

−13.

VII. EXPERIMENTAL RESULTS

We conducted multiple evaluations of our solution, by
comparing results from our approximate checkers with results
from their non-approximated, baseline hardware counterparts.
We injected multiple bugs of varying complexity and location
into our case study designs one at a time; for each bug, we
run separate simulations with the approximate and baseline
checkers. Each simulation could terminate either because a
bug was detected or because the test ran to completion. Each

TABLE II: Bugs injected in calc3. The second column indicates
which checker should detect the bug. In the approximate version,
output checker bugs appear as register update mismatches.

id checker description
adds cmd tx only dispatch add commands, ignoring shift commands
ovr output add or subtract with overflow writes register
stuck output 20th bit in register 13 is stuck
stall cmd tx 11th add/shift/branch command stalled
blk1 output second branch with same tag not blocked
dreg output a write-after-write hazard violation
blk2 priority command with tag 11 is not blocked by command with tag 00
iraw output a read-after-write hazard violation (incoming command)
eraw output a read-after-write hazard violation (enqueued command)
skip output branch follower not skipped following branch

TABLE III: Bugs injected in router sorted by decreasing difficulty.

id checker description
under flow Input packet list underflow
2sent flow Packets sent twice
badin input Packets with bad parity accepted
ovr output Memory overwrite
ord routing table Wrong routing table search order
badout output Packets sent with bad parity
tim2 output Wrong timing for data ready signal
exist routing table Packet accepted when dest. not in routing table
tim1 output Wrong timing for request signal
lock input Routing table not locking itself when searching

bug detection (or lack thereof) by an approximate checker
was compared to the corresponding detection by its baseline
counterpart and then labeled as a true positive, true negative,
a false positive or false negative.

Tables II and III describe the bugs injected into the designs.
A total of 500 tests on calc3 and 1,000 tests on router

were executed for each design variant obtained by injecting
a different bug. In most cases, test stimuli were randomly
generated and uniform for all design variants. For the few
hard-to-sensitize bugs, we inserted manually crafted input
sequence snippets at random times in the simulation.
Figures 7 and 8 show the breakdown of the test outcomes:

for each bug, we report how many tests resulted in each
outcome type. The average effects of approximations on accu-
racy and sensitivity are shown in Table IV. For router, the
different applied approximations were tested both separately
and combined together. Note that for the stuck bug correspond-
ing to a stuck bit in a calc3 register, our approximation
scheme was not able to detect any occurrence, since the stuck
bit position (bit 20) is not monitored by the approximate
checkers. Note in Figure 7 that the calc3 checkers always
give desirable outcomes, either true positive or true negative,
for half of the bugs. For the rest, we get some false outcomes;
however, there is still a significant rate of true positives (high
sensitivity), which enables good bug diagnosis.

In the case of router, notice that the signature approxima-
tion technique produces only true positives and negatives, and
thus has a perfect accuracy of 1. The state reduction technique
has perfect accuracy for all bugs except tim2: this bug is never
detected as it requires accurate timing checks, removed by
the approximation. However, losing some cycle accuracy does

0

500

Calc3 bugs

false neg. true pos. false pos. true neg.

#
te

s
ts

Calc3 bugs

Fig. 7: Detection of calc3 bugs. There are no false positives, since
calc3 approximations were designed to avoid them.

0

1000

#
 t

e
s
ts

false neg. true pos. false pos. true neg.

s
ta

te
 r

e
d

u
x

0

1000

#
 t

e
s
ts

s
ig
n
a
tu
re
s

0

1000

#
 t

e
s
ts

s
a
m
p
li
n
g

0

1000

#
 t
e
s
ts

Router bugs

a
ll

 c
o

m
b

in
e
d

Fig. 8: Detection of router bugs. Different simulations were run
for individual approximations and all combined.

TABLE IV: Average approximation accuracy and sensitivity.

metric calc3 router router router router

st. redux signature sample all
accuracy 87.5% 95.5% 100% 45.8% 45.3%
sensitivity 74.9% 80% 100% 100% 89.1%

not affect all timing bugs, as tim1 is still detected. Uniform
degradation is observed for the sampling approximation on
the routing table, by introducing false positives for all bugs.
Whenever the routing table checker incorrectly assumes that
an entry exists in the table, an execution mismatch occurs.
To study the impact of input distribution on the approximate
routing table checker, we conducted a separate test where we
generated packet address masks with non-uniform probability
to imitate real-world network traffic. We observed that when
masks with a higher probability of zeroes in the most signifi-
cant bits are supplied as inputs, the number of false positives
is significantly reduced.

Based on our findings, we are able to make some general
observations: i) sampling approximations give poor results
if they do not take into consideration the nature of the
data to be sampled. ii) When a checker combines multiple
approximations, the worst performing one dominates. This is
not a characteristic inherent to any approximation technique,
but rather the result of the application of a technique to a
checker that is not well suited for it. Moreover, as our results
indicate, inaccuracies manifest in different ways for different
types of designs and bugs.

Finally, we evaluated the logic complexity of the baseline
embedded hardware checkers and compared against our ap-
proximate checkers. To this end, we synthesized both designs
and the hardware descriptions of the baseline and approximate
checkers using Synopsys’ Design Complier, targeting the
technology-independent GTECH library. Since the process of
mapping a digital design onto an acceleration platform is very
specific to the platform being used, we simply considered
the total number of logic blocks generated as a reasonable
indicator of logic size.

TABLE V: Logic complexity of approximate checkers. Overall
checker overhead for calc3 reduces from 87% to 36%. Overall
checker overhead for router reduces from 57% to 23%.

unit technique original approximate reduction
(#blocks) (#blocks) (%)

calc3 output sampling 4,810 1,332 68.1
calc3 priority sampling 2,928 782 73.3
calc3 reg file eliminate 7,945 1,031 87
calc3 checker combined 20,473 8,565 58.2

router input+output state redux 3,764 2,664 29.2
router flow signatures 146,910 56,983 61.2
router routing table sampling 2,526 1,835 27.4
router checker combined 153,200 61,482 59.9

VIII. CONCLUSION

Our case studies have demonstrated that checker approx-
imation is a viable solution to reduce hardware overhead
of complex checkers while still enabling a large fraction of
bug manifestations to be detected. The application of the
solutions presented in this work on actual industrial designs
and acceleration platforms, with automated tools to generate
approximate checkers, will be addressed in future work.

REFERENCES

[1] Constrained-random test generation and functional coverage with Vera.
Technical report, Synopsys, Inc, 2003.

[2] Y. Abarbanel, I. Beer, L. Glushovsky, S. Keidar, and Y. Wolfsthal. FoCs:
Automatic generation of simulation checkers from formal specifications.
In Proc. CAV, pages 538–542, 2000.

[3] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G. Memmi, and
D. Miller. A reconfigurable design-for-debug infrastructure for SoCs. In
Proc. DAC, pages 7–12, 2006.

[4] A. Adir, M. Golubev, S. Landa, A. Nahir, G. Shurek, V. Sokhin,
and A. Ziv. Threadmill: A post-silicon exerciser for multi-threaded
processors. In Proc. DAC, pages 860–865, 2011.

[5] T. Austin, V. Bertacco, D. Blaauw, and T. Mudge. Opportunities and
challenges for better than worst-case design. In Proc. ASP-DAC, pages
2–7, 2005.

[6] J. Babb, R. Tessier, M. Dahl, S. Hanono, D. Hoki, and A. Agarwal.
Logic emulation with virtual wires. IEEE Trans. on CAD, 16(6):609–
626, 1997.

[7] B. Bentley. Validating the Intel Pentium 4 microprocessor. In Proc.
DAC, pages 244–248, 2001.

[8] M. Boulé, J.-S. Chenard, and Z. Zilic. Adding debug enhancements to
assertion checkers for hardware emulation and silicon debug. In Proc.
ICCD, pages 294 –299, 2006.

[9] M. Boulé and Z. Zilic. Automata-based assertion-checker synthesis of
PSL properties. ACM TODAES, 13:4:1–4:21, 2008.

[10] Cadence. Incisive Enterprise Specman Elite Testbench, 2011. http://
www.cadence.com/products/fv/enterprise specman elite.

[11] Cadence. Palladium, 2011. http://www.cadence.com/products/sd/
palladium series.

[12] K.-H. Chang, V. Bertacco, I. L. Markov, and A. Mishchenko. Logic
synthesis and circuit customization using extensive external don’t-cares.
ACM TODAES, 15:26:1–26:24, 2010.

[13] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector
Machines and Other Kernel-based Learning Methods. Cambridge
University Press, 2000.

[14] S. Das, R. Mohanty, P. Dasgupta, and P. P. Chakrabarti. Synthesis of
System Verilog assertions. In Proc. DATE, pages 70–75, 2006.

[15] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge. Razor: A low-power
pipeline based on circuit-level timing speculation. In Proc. MICRO,
pages 7 – 18, 2003.

[16] I. Mavroidis and I. Papaefstathiou. Efficient testbench code synthesis
for a hardware emulator system. In Proc. DATE, pages 888–893, 2007.

[17] M. D. Moffitt, M. A. Sustik, and P. G. Villarrubia. Robust partitioning
for hardware-accelerated functional verification. In Proc. DAC, pages
854–859, 2011.

[18] K. Ravi, K. L. McMillan, T. R. Shiple, and F. Somenzi. Approximation
and decomposition of binary decision diagrams. In Proc. DAC, pages
445–450, 1998.

[19] M. Shabtay, D. Leonard, B. Maya, and S. Michael. Building transaction-
based acceleration regression environment using plan-driven verification
approach. In DVCON, 2007.

[20] B. Wile, J. Goss, and W. Roesner. Comprehensive Functional Verifica-
tion. Morgan Kaufmann Publishers Inc., 2005.

[21] Xilinx Verification Tool. ChipScope Pro, 2006. http://www.xilinx.com/
ise/optional prod/cspro.html.

