
A Probabilistic Analysis Method for Functional
Qualification under Mutation Analysis

Hsiu-Yi Lin, Chun-Yao Wang, Shih-Chieh Chang, Yung-Chih Chen†,
Hsuan-Ming Chou, Ching-Yi Huang, Yen-Chi Yang, and Chun-Chien Shen

Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan, R.O.C.
†Department of Electronic Engineering, Chung Yuan Christian University, Chung Li, Taiwan, R.O.C.

Abstract—Mutation Analysis (MA) is a fault-based simulation
technique that is used to measure the quality of testbenches in
error (mutant) detection. Although MA effectively reports the
living mutants to designers, it suffers from the high simulation
cost. This paper presents a probabilistic MA preprocessing
technique, Error Propagation Analysis (EPA), to speed up the
MA process. EPA can statically estimate the probability of the
error propagation with respect to each mutant for guiding the
observation-point insertion. The inserted observation-points will
reveal a mutant’s status earlier during the simulation such
that some useless testcases can be discarded later. We use
the mutant model from an industrial EDA tool, Certitude, to
conduct our experiments on the OpenCores’ RT-level designs.
The experimental results show that the EPA approach can save
about 14% CPU time while obtaining the same mutant status
report as the traditional MA approach.

I. INTRODUCTION

Functional verification is a process to ensure that the
implementation is in accord with the design intent [24][26].
When designs are increasingly complex, functional verification
are getting more difficult for designers. In general, simulation-
based verification methods are the mainstream in the current
design flow, especially for large designs. Due to the fact
that exhaustive simulation is infeasible, coverage metrics are
proposed to measure the quality of verification and thus reduce
the simulation cost. However, the completeness problem is still
an issue. This is because even all coverage metric reports show
that there is no bug in the design under verification, it cannot
ensure that additional verification tasks would never discover
a new bug.

Coverage metrics can be generally classified into two cat-
egories, and they are structural coverage (or code coverage)
[18][23] and functional coverage [9][12][23]. Most structural
coverage metrics only evaluate the “reachability" of the stimuli
to the design content, but do not consider stimuli’s abilities to
propagate bugs to observation locations. Therefore, the higher
scores in structural coverage metrics do not indicate the better
qualities of the test vectors. On the other hand, the functional
coverage metric considers the semantic interpretation of the
functionality to exercise the design. Since verification engi-
neers need to manually set up various verification plans and
a set of coverage points based on the specifications, it is a
challenge to develop an automatic method to deal with it.

This work was supported in part by the National Science Council of Taiwan
under grants NSC 99-2628-E-007-096, NSC 100-2628-E-007-008, and NSC
100-2628-E-007-031-MY3

978-3-9810801-8-6/DATE12/ c©2012 EDAA

Fault-based verification technique [5–7][10][11] is an ef-
fective approach that evaluates the quality of the verification
environment. By injecting artificial faults into the original
implementation, designers can check whether the verification
environment can differentiate the faulty and original designs.
If all the artificial faults can be detected, it implies that the
verification environment is effective to reveal potential bugs;
otherwise, the verification environment exists some weakness.
Thus, fault-based verification does consider the error propaga-
tion issue that the structural coverage does not. The fault-based
verification is similar to gate-level fault simulation where the
stuck-at fault model is used for calibration of manufacturing
test vectors.

Mutation Analysis (MA) is such a fault-based verification
technique, originating from the software engineering field
in the 1970s [8][13]. MA targets at only a subset of all
potential faults and assumes that these faults are sufficient to
represent all faults. This is because MA approach is based
on two hypotheses: the Competent Programmer Hypothesis
[8] and Coupling Effect Hypothesis [8][20][22]. Competent
Programmer Hypothesis states that programmers develop their
programs very close to the correct version. Coupling Effect
Hypothesis assumes that complex faults can be coupled by
simple faults in such a way that a test set detecting all simple
faults in a program will detect a very high percentage of the
complex faults [22]. As a result, MA approach only considers
some simple syntactical changes instead of generating all
potential faults. For example, CertitudeTM [3][14] is a commer-
cial EDA tool implementing MA approach in RT-level designs
for testbench qualification.

In the process of MA, each simple syntactical change is
called a mutant. For example, given a program segment a <=
b | c, after changing the operator, the new program segment
becomes a <= b & c. The replacement of “|” with “&” is
a mutant for the original program. In the traditional process
of MA, a set of mutants will be generated first, and then all
test data are simulated. If we observe any difference caused
by a mutant at the primary outputs, we call the mutant is
killed, otherwise this mutant is a living mutant. The existence
of living mutants indicates some weaknesses in the verification
environment.

The MA makes the fault-based verification technique be-
come a systematic verification methodology. However, it has
suffered from some problems. The surveys of MA in litera-
ture [16][21] addressed that the MA induces extremely high
computational cost in the state-of-the-art. For each injected

mutant, we need to perform the whole design simulation for
all the testcases once. Therefore, the computational cost will
rapidly increase due to a great amount of injected mutants and
testcases.

In this work, we propose a preprocessing technique for
accelerating MA process named Error Propagation Analysis
(EPA), which analyzes the error propagation ability of each
mutant before performing the simulation in RT-level designs.
Then, we determine a few observation-points [17] to observe
the effect of error propagation. The analyzed results can be
embedded into the MA cost reduction technique, hence, we
can reduce the simulation cost of MA.

II. COST REDUCTION TECHNIQUES IN MA
In the traditional MA process, a set of mutated programs

are generated first, then all the testcases are applied to each
mutated program to determine if each mutant is killed or not.
The simulation cost of this MA approach is much more than
that in the original design simulation.

In the latest survey of MA [16], cost reduction techniques
are divided into two types: one is mutant reduction, and
the other is simulation reduction. The mutant reduction is to
reduce the number of generated mutant without having signif-
icant loss of the testbench quality. The simulation reduction is
to minimize the simulation cost of a mutated program. In this
work, we focus on the issue of simulation reduction. Thus,
in the next paragraph, we will introduce the background of
a widely used simulation reduction technique, “Strong, Weak,
and Firm Mutation (SWFM)”, that is the basis of this work.

SWFM proposed three different degrees of mutation with
respect to the observation-points, and they are Strong Muta-
tion, Weak Mutation, and Firm Mutation. In the traditional
MA process, when a mutant is “killed” after the simula-
tion, it means that the error effect caused by this mutant
is propagated to the primary outputs. This type of mutation
is called Strong Mutation [8]. Strong Mutation can reveal
the potential weaknesses thoroughly, but it suffers from the
high simulation cost due to the whole design simulation. To
reduce the simulation cost, Weak Mutation [15] was proposed.
Weak Mutation assumes that each statement in a design is an
observation-point. Thus, if a mutant causes any statement’s
output changed, the mutant is said killed. As a result, Weak
Mutation reduces the simulation cost but sacrificing the quality
of testbench. When the observation-points lie between the
mutated statements (Weak Mutation) and the primary outputs
(Strong Mutation), this mutation is called Firm Mutation [25],
which is a tradeoff between Strong and Weak Mutations. A
Verilog example about these three types of mutations is shown
in Fig. 1 and Table I.

In Fig. 1, the original operation b&c is replaced with b|c
in line 8, and it is an injected mutant. We apply an input
vector {a, b, c} = {0, 0011, 0001} to both the mutated and the
original programs. In this example, we need to simulate this
design for 5 clock cycles to get the value of out. The results
are shown in Table I. Since these three types of mutations
have different observation-points, they may result in different
mutant statuses. The Strong Mutation performed the complete
simulation, and determined the mutant status after simulating
5 cycles. This mutant status is living because the primary

Figure 1. An example for demonstrating Strong, Weak, and Firm Mutations.

Table I
THE SIMULATION RESULT WITH THE MUTATED PROGRAM IN FIG. 1

test input {a,b,c} = {0,0011,0001} and the mutant b|c

Mutation
type

Observation-
Point

Expected
Result

Mutated
Result

Mutant
Status

Determined
at # cycle

Strong out out=5 out=5 Living 5

Weak x x=0001 x=0011 Killed 1

Firm y y=0000 y=0000 Living 1

output out of mutated program is the same as that of the
original program. In the Weak Mutation, the observation-point
is the site of the mutant. Thus, this mutant status is killed
after one cycle simulation because of the different results
between the statements of x = b&c and x = b|c. For the
Firm Mutation, however, the location of observation-point has
many choices. Assume we set y as the observation-point in
this example, then the mutant is still living after one cycle
simulation by comparing the value y in the mutated and
the original programs. From this example, we found that the
advantage of Firm Mutation is that it can determine the living
mutant after fewer simulation cycles. This is because a living
mutant under the Firm Mutation is still a living mutant under
the Strong Mutation.

Due to the incomplete simulation, killed mutants under the
Weak Mutation are very likely to be living mutants under the
Strong Mutation. To avoid sacrificing the quality of results, we
need to check whether all killed mutants under the Weak Mu-
tation also can be killed under the Strong Mutation. Although
the Weak Mutation Analysis cannot decide the mutants’ actual
statuses, it can be used to eliminate some useless testcases
for the further Strong Mutation. For example, when applying
100 testcases to test a mutant A, we need to perform the
whole design simulation 100 times under the Strong Mutation.
Suppose we applied the Weak Mutation first, and found that
80 out of 100 testcases cannot kill the mutant A. Then these 80
testcases cannot kill the mutant A under the Strong Mutation,
either. Therefore, only the remaining 20 testcases need to be
applied for the mutant A under the Strong Mutation. Thus,
the total simulation cost can be reduced by first applying the
Weak Mutation.

Although the Weak Mutation effectively reduces the sim-
ulation cost, the remaining simulation cost for the Strong
Mutation is still large. A killed mutant under the Weak
Mutation but living under the Strong Mutation means that
this mutant causes the error in the mutated statement but
cannot be propagated to the primary outputs. We called such a
mutant Non-Propagation Mutant (NPM). The Firm Mutation
is proposed to mainly target at this propagation issue. It can
also be designed to insert the internal observation-points to
find the potential NPMs earlier. However, the determination
of the locations and the number of the observation-points is a

critical issue. This is because too many observation-points will
increase the simulation overhead, and improper observation-
points will decrease the probability of finding potential NPMs.
To solve this problem, we propose a probabilistic analysis to
automatically determine the observation-points based on the
Firm Mutation mechanism, which will be detailed in Section
III.

III. PROPOSED APPROACH

A. Overview

The EPA intends to statically analyze the structure of HDL
design and evaluate the error propagation ability for a given
mutant. We propose Mutant Controllability (MC) to represent
the changing probability of each signal. We also propose the
MC estimation formulae for various operations that are used to
determine the MCs of the signals in the propagation path with
respect to each mutant. Using the estimated MC, we derive the
Decreasing Rate (DR) of MC, and select the locations with the
largest DR for inserting observation-points.

In the Firm Mutation approach, the inserted observation-
points will affect a mutant’s status during the simulation.
As a result, the testcases that cannot kill the mutant are
excluded from the original testcase set for speeding up the
succeeding Strong Mutation simulations. Finally, we collect
the living mutants under the Firm Mutation, and analyze their
related MCs to point out the possible causes for their liveness.
Note that our approach in this work targets at the word-level
operations in Verilog designs, but it also can be used in other
design languages in a similar way.

The functional qualification flow equipped with the pro-
posed EPA is shown in Fig. 2, where the EPA (the gray area)
includes MC estimation, observation-point selection, and Firm
Mutation Analysis. After performing the EPA, the effort of
performing the Strong Mutation Analysis can be reduced to
that only dealing with killed mutants and the corresponding
testcases under the Firm Mutation.

B. Terminology

1) Mutant Controllability (MC): When MA is performed,
the signals in the propagation path from the site of mutant to
the primary outputs will be possibly changed. If one of the pri-
mary output changes, the mutant is killed as desired. However,
if the mutant effect is blocked such that all primary outputs
are intact, the mutant is living. Here, we define the Mutant
Controllability (MC) of each signal as its changing probabil-
ity in its propagation path with respect to a given mutant.
Specifically, MC(m, s) represents the changing probability of
a signal s with respect to a mutant m. MC(m, s) = 1 if the
signal s is on the mutated statement. MC(m, s) = 0 if the
mutant m does not change the value of the signal s. The signal
with a higher MC means that the mutant is able to change the
signal with a higher probability. For the example in Fig. 3,
the mutant m is on tmp1, hence, we set MC(m, tmp1) = 1.
Since the error effect will be propagated and the signals x, y
are on the propagation path from m, we can derive the values
of MC(m,x) and MC(m, y) after the MC calculation. On
the other hand, tmp2 is not on the propagation path, hence,
we can directly set MC(m, tmp2) = 0.

Figure 2. Functional qualification flow with the Error Propagation Analysis.

Figure 3. A propagation path from the mutant m.

2) Control Data Flow Graph (CDFG): In this work, the
input is a Verilog design represented as a CDFG [4][19]. A
CDFG representation is composed of four types of nodes:
operational nodes, control nodes, call nodes, and storage
nodes. Operational nodes are responsible for arithmetic, log-
ical, or relational operations. Control nodes are responsible
for branch conditions such as if-else or case statements. Call
nodes and storage nodes represent calls to subprogram and
assignment operations associated with variables and signals,
respectively. Since most mutant effects are propagated through
the operational nodes and control nodes, our MC estimation
formulae only focus on these two types of nodes. Although
storage nodes do not affect the propagation of mutant effects,
they are the MC recomputation points for the sequential part
of designs. Fig. 4 shows a mapping example from a Verilog
design to its CDFG.

C. Mutant Controllability Estimation Formulae
MC estimation formulae are used to estimate how difficult

a mutant effect can be propagated out. Operational nodes can
be divided into unary and binary operational nodes and are
discussed as follows:

1) Unary operational nodes: Consider a unary operation
"out = op a", where a is an operand, op is a unary operator
as shown in Fig. 5(a). The MC estimation formula for a unary
operation is shown as EQ(1).

MC(m, out) = MC(m,a)× [1− Pmask(v
′
a, op)] (1)

Figure 4. An example about the mapping from a Verilog design to its CDFG.

In EQ(1), we get the MC of out from the MC of a. Here,
suppose that for the operand a, va is its correct value and v′a
is the new value caused by the injected mutant. Pmask(v′a, op)
represents the probability of the "same" result in the operations
of op va and op v′a. This probability is called masking
probability. Assume vout and v′out are the results of the
unary operation with respect to the input va and v′a, then
Pmask(v′a, op) = P (vout = v′out). To derive this masking
probability, we need to consider the operator op and the width
w of the operand a.

To simplify the computation, we assume that va and v′a are
evenly distributed from 0 to 2w − 1, and va 6= v′a (the mutant
effect has been activated). For example, suppose the op is a
unary AND "&", which will output 1 iff all bits of the operand
are 1; 0 otherwise. The masking probability is the probability
that vout and v′out are the same. Thus, Pmask(v′a,&) is derived
as P1((vout = 1)∧ (v′out = 1))+P2((vout = 0)∧ (v′out = 0)).
Because only one vector {111...1} results in the output 1, it
is not possible that &v′a = v′out = &va = vout = 1. As a
result, P1 is 0. On the other hand, the probability of &va =
vout = 0 is 1 − 1

2w , and since v′a 6= va, the probability of
&v′a = v′out = 0 is 1 − 2

2w . Also, since these two events are
independent, P2 is the product of them. Hence, we can get
Pmask(v′a,&) = P1 +P2 = 0+(1− 1

2w)(1− 2
2w). Finally, we

get MC(m, out) = MC(m, a)× [1− (1− 1
2w)(1− 2

2w)]. This
result shows that the MC(m, out) will be smaller when w is
larger, which implies that the error effect will be difficultly
propagated. The masking probabilities of the common unary
operations are summarized in the bottom of Table II.

2) Binary operational nodes: Consider a binary operation
"out = a op b", where a and b are the operands. The estimation
formula is shown as EQ(2).

MC(m, out) =MC(m,a)×MC(m, b)×[1− Pmask(v
′
a, vb, op)]+

MC(m,a)×MC(m, b)×[1− Pmask(va, v
′
b, op)]+

MC(m,a)×MC(m, b)×[1− Pmask(v
′
a, v
′
b, op)]

(2)

In EQ(2), MC(m, a) and MC(m, b) represent the probability
of the correct values on the input signals and can be derived
from 1 − MC(m, a) and 1 − MC(m, b), respectively. In a
binary operation as Fig. 5(b) shows, there are three conditions
that the error effects will be propagated out with respect to
the incorrect values on a, b, or both. Because the masking
probabilities in these three conditions are different, we sepa-
rately consider these conditions and multiply them with their
corresponding MC or MC values. The first term in EQ(2)
shows that v′a is an incorrect value and vb is a correct value,
hence, the equation is involved with the factors MC(m, a)
and MC(m, b). Similarly, the second term is involved with
MC(m, a) and MC(m, b) with respect to va and v′b. The last
term represents the condition of the simultaneous incorrect
values v′a and v′b.

For example, suppose the operator op is "+" and the width
of the operands is w+. To derive the masking probability for
each term in EQ(2), we assume that the error effect will cause a
change with ∆a and ∆b such that v′a = va+∆a and v′b = vb+
∆b, where ∆a 6= 0 and ∆b 6= 0. Thus, both Pmask(v′a, vb,+)
and Pmask(va, v

′
b,+) will be 0 because of va+vb 6= v′a+vb =

(va + ∆a) + vb and va + vb 6= va + v′b = va + (vb + ∆b).

Figure 5. (a) A unary operational node. (b) A binary operational node. (c)
A control node.

Table II
MASKING PROBABILITIES FOR COMMON OPERATIONS IN VERILOG

Types Operation Pmask(v′a, vb, op)Pmask(va, v′b, op)Pmask(v′a, v′b, op)

a + b 0 0 1
2wa

Arithmetic a ∗ b 1
2w

1
2w

0

a%b b
2w−1

b is constant

a > b, a < b 1
2

Relational a > b 2w−b
2w

b is constant

a < b b
2w

b is constant

Equality a == b, a! = b 1 −
∑2w+1−2

i=1
2i

(2w+1)2

Bit-wise a&b, a|b, a ∧ b
∑w

i=1

(
w
i

)
1
2i

Shift a >> b 2b−1
2w−1

b is constant
~a 1 unary operation

Unary ∧a 1
2

unary operation

&a, |a (1 − 1
2w

)(1 − 2
2w

) unary operation

For the last term, va + vb = v′a + v′b = va + vb + ∆a + ∆b is
true iff ∆a = −∆b is true. Therefore, the masking probability
Pmask(v′a, v

′
b,+) in the last term is the same as the probability

of ∆a = −∆b, which is 1
2w+ . Finally, we get MC(m, out) =

MC(m, a)×MC(m, b)×(1− 1
2w+). The masking probabilities

of the common binary operations are also summarized in Table
II.

3) Control nodes: Consider a control node which contains
n inputs {d0, d1..., dn−1}, a data output out, and a selector
s with the range from 0 to n − 1. There are two conditions
that the error effect will be propagated to the data output out:
one is the error effect is on the selector s and the incorrectly
selected input has a different value with that of the expected
input; the other is the error effect is on di and s = i. To
simplify our computation, we assume s is an integer evenly
distributed from 0 to n−1, which means that each input signal
will be selected with the same probability. Additionally, the
width of each di is w and its value is also evenly distributed
from 0 to 2w−1. The estimation formula for the control nodes
is shown as EQ(3).

MC(m, out) =(MC(m, s)×
2w − 1

2w
) +

(MC(m, s)×
∑n−1

i=0 MC(m, di)

n
)

(3)

We divide EQ(3) into two terms with respect to whether the
selector is erroneous or not. The first term is for the case
that the error effect is on the selector s. Suppose i, j are the
correct and incorrect values of the selector s, we only need
to consider whether the expected input di and the incorrectly
selected input dj have the same value. Since di, dj are evenly
distributed from 0 to 2w − 1, the probability of di 6= dj is
2w−1
2w . Therefore, the first term is MC(m, s) × 2w−1

2w where
MC(m, s) is the probability of erroneous selector. The second
term is for the case that the value of the selector s is correct.
The error effect will be propagated when the selected input
has an incorrect value. Because we assume each input will
be selected with the same probability, we use the averaged
MC value

∑n−1
i=0 MC(m, di)

n to represent the probability of the

error effect on the selected input. Thus, the second term is the
product of MC(m, s) and the averaged MC value among all
inputs.

D. MC Estimation Considering the Sequential Circuits
When considering sequential circuits, we can see that there

exists feedback loops in a CDFG. Because a mutant is likely to
affect some signals after a few cycles, we need to recompute
the MC values of signals in the feedback loop for several
times. Consider the feedback case as shown in Fig. 6, after
deriving the MC(m,E) with a given mutant m, the value of
MC(m,A) will be updated in the next clock cycle. Because
assignment operations do not affect the propagation of error
effects, we get updated MC(m,A) = M(m,E). Therefore,
we need to recompute MC(m,D) for the operation D =
A op B. To avoid too much computation cost for the feedback,
we terminate the recomputation when the difference between
the current and the next MC values is under a given threshold.

E. The Observation-Point Selection
For any node in the CDFG, if the error effect can be

observed on its inputs but not on its output, this node is an
error-masking node. If there exists one error-masking node
on each propagation path of a mutant, this mutant is an
NPM. The observation-point is used to observe the mutants’
statuses under the Firm Mutation. Since we desire to reduce
the unnecessary simulation effort, a proper observation-point
should be lied on the output of an error-masking node.

To determine these proper observation-points, we must
find the error-masking nodes first. Because of the enormous
number of nodes in the CDFG, finding all the error-masking
nodes for an NPM is time-consuming. Thus, we use the results
of the MC estimation to find the potential error-masking nodes.

Next, we detail the observation-point selection method. In
the first step, we extract all the propagation paths of a given
mutant without considering feedback signals. For a given
mutant m, assume that there are n propagation paths from m
to the primary outputs. PPm,i denotes the ith propagation path
of the mutant m where 1 ≤ i ≤ n. PPm,i consists of some
ordered signals on this propagation path. |PPm,i| denotes the
number of signals on this path. For example, considering a
design segment in Fig. 7, if there exists an error effect on
A from a mutant m, we can identify two propagation paths
PPm,1 = {A, tmp,X, Y,O1}, PPm,2 = {A, tmp,X, Y,O2},
and |PPm,1| = |PPm,2| = 5.

We propose the Decreasing Rate (DR) as shown in EQ(4)
to represent the degree of the error-masking effect between
adjacent signals on a given propagation path PPm,i.

DRsk (PPm,i) =
MC(m, sk−1)−MC(m, sk)

MC(m, sk−1)
, 2 ≤ k ≤ |PPm,i|

(4)
In EQ(4), DRsk(PPm,i) represents the DR of the kth signal,
sk, on the PPm,i. For example, given a PPm,i with three
signals {a, b, c}, DRs3(PPm,i) is the DR of the third signal
c on the PPm,i and it can be derived by MC(m,b)−MC(m,c)

MC(m,b) .
The larger DRsk(PPm,i) implies the node between the signals
sk−1 and sk is a potential error-masking node. Therefore, we
select the signals with the largest DR in each propagation path

Figure 6. The feedback case.

Figure 7. An example of propagation paths.

to be the observation-point candidates. Finally, we choose the
most frequently selected signals among all candidates to be
the final observation-points.

IV. EXPERIMENTAL RESULTS

We implemented the EPA analyzer in C++ and the testbench
in Verilog, respectively. The experiments were conducted on
an Intel CoreTM2 Quad 2.5 GHz Linux platform (Ubuntu
10.10).

To integrate the MA and our EPA approach into the ver-
ification environment, we establish a framework to automate
this technique as shown in Fig 8. The EPA analyzer analyzes
the mutated design and determines its observation-points.
It also automatically generates the monitors to observe the
simulation data on the observation-points. Here, we use a
random generator to generate the testcases for the designs. The
comparator compares the simulation data between the original
and the mutated designs, and reports the results. Because
the generated monitors can be easily configured to observe
different signals for performing the Strong, Weak, or Firm
Mutation, this framework makes the testbench reusable for
different mutated designs. The threshold value for terminating
the recomputation in feedback loops is set 0.1.

The commercial EDA tool, Certitude [14], has proposed var-
ious types of mutants. In our experiments, we adopt three types
of mutants, and they are changing operator, dead assignment,
and condition stuck-at-true (false). Our simulation engine is
Icarus Verilog [1], an open-source Verilog simulator. The
benchmark comes from the OpenCore website [2]. We only
conduct the experiments for three designs in our preliminary
implementation. The results of EPA are shown in Table III.
Columns 2 and 3 show the number of lines in the benchmarks
and the number of injected mutants, respectively. Column 4 is
the spent CPU time of the EPA approach.

Figure 8. The framework of our implementation.

Table III
THE EPA RESULTS.

Design RTL #lines |IM | Tepa(s)

double_fpu 1910 100 11
ecpu_alu 1232 150 10

reed_solomon_decoder 3802 300 31

Table IV
THE WEAK AND FIRM MUTATION ANALYSIS RESULTS.

Design |TC| |IM | |TSR| Preprocessing Method Strong Mutation Analysis
Pre. Types |RSR| RSR% Mp Tp Ms Ts(+Tp) T%

double_fpu 1000 100 1.0× 105
Weak 3.72× 104 37.20 23 132 43 1412 1
Firm 4.07× 104 40.70 29 296 43 1136 0.80

ecpu_alu 1000 150 1.5× 105
Weak 4.37× 104 29.13 37 73 61 412 1
Firm 4.92× 104 32.80 39 81 61 391 0.94

reed_solomon_decoder 100 300 3.0× 104
Weak 1.36× 104 45.33 103 181 171 2701 1
Firm 1.82× 104 60.67 112 258 171 2273 0.84

Averaged CPU time reduction of the Strong Mutation Analysis with the Firm Mutation preprocessing 0.86

To compare the performance of our preprocessing method,
we apply the Weak and the Firm Mutation to the benchmark,
respectively, followed by the Strong Mutation. The Firm
Mutation is embedded in the proposed EPA approach. The
simulation results are shown in Table IV. Columns 2 and 3
list the number of testcases (|TC|) and the number of injected
mutants (|IM|), respectively. Column 4 is the number of the
total simulation rounds (|TSR|). Here, we use a Simulation
Round (SR) to represent a unit cost in the mutation simulation,
which is the time cost of applying a testcase to test a mutant.
Thus, the total number of SRs in performing the MA without
any preprocessing method is the product of the number of
testcases and the number of injected mutants. Columns 5 to 9
show the results of the two MA preprocessing methods, Weak
and Firm Mutation. Because both preprocessing methods can
find the living mutants and the corresponding useless testcases,
the numbers of SRs and the number of injected mutants
applying for the further Strong Mutation are reduced. Columns
6 and 7 show the number of the reduced SRs (|RSR|) and
the percentage of that to the |TSR| (RSR%). Column 8 is
the number of living mutants reported by the preprocessing
methods. Column 9 is the required CPU time measured in
second. Note that the Firm Mutation is embedded into the
EPA approach, therefore, the time for the EPA as shown in
Table III has been accounted in Column 9. Columns 10 to 12
show the results of overall flow including the preprocessing
method. Column 10 is the number of living mutants (Ms).
Column 11 is the total CPU time including the preprocessing
time. Column 12 shows the ratio of total CPU time of the
Strong Mutation embedding the Firm Mutation against the
Weak Mutation for the preprocessing (T%).

According to Table IV, we found that the Weak Mutation
cost less CPU time as compared to the Firm Mutation for
the preprocessing. It is because for the Weak Mutation, it can
determine a mutant is killed when the mutated statement was
activated, without considering the propagation issue. On the
other hand, the Firm Mutation embedded in our EPA method
identified more living mutants and the corresponding useless
testcases for the succeeding Strong Mutation. Thus, although
the Firm Mutation cost more CPU time, its larger number of
RSRs makes computation cost in the further Strong Mutation
less as shown in Column 11. The averaged CPU time reduction
in the last row shows that the Firm Mutation embedded in our
EPA method can save 14% CPU time on average.

V. CONCLUSION

In this paper, we propose an Error Propagation Analysis ap-
proach that deals with the error propagation issues in Mutation
Analysis. This approach can probabilistically analyze the HDL

designs and add the proper observation-points. Based on the
Firm Mutation approach, we can determine the mutant status
by monitoring these selected observation-points. Therefore, the
Firm Mutation can discover more living mutants and discard
the useless testcases of each mutant to reduce the simulation
cost of the further Strong Mutation. The experimental results
show that our approach is more efficient than the Weak
Mutation, which does not consider the error propagation issue.

REFERENCES
[1] Icarus Verilog. [Online]. Available: http://iverilog.icarus.com/
[2] OpenCores. [Online]. Available: http://opencores.org/
[3] SpringSoft. [Online]. Available: http://www.springsoft.com/
[4] S. Anellal and B. Kaminska, “Scheduling of a control and data flow graph,” in

Proc. IEEE Int. Symp. on Circuits and Systems, May 1993, pp. 1666 – 1669.
[5] J. Arlat, A. Costes, Y. Crouzet, J. Laprie, and D. Powell, “Fault injection and

dependability evaluation of fault-tolerant systems,” IEEE Trans. Computers, vol. 42,
no. 8, pp. 913 – 923, Aug. 1993.

[6] A. Benso, A. Bosio, S. Di Carlo, and R. Mariani, “A functional verification based
fault injection environment,” in Proc. Defect and Fault-Tolerance in VLSI Systems,
2007, pp. 114 – 122.

[7] A. Benso, M. Rebaudengo, M. Reorda, and P. Civera, “An integrated HW and
SW fault injection environment for real-time systems,” in Proc. Defect and Fault
Tolerance in VLSI Systems, 1998, pp. 117 – 122.

[8] R. DeMillo, R. Lipton, and F. Sayward, “Hints on test data selection: Help for the
practicing programmer,” IEEE Trans. Computers, vol. 11, no. 4, pp. 34 – 41, Apr.
1978.

[9] L. Drucker, “Functional coverage metrics–the next frontier,” in EETimes, Aug.
2002.

[10] F. Ferrandi, F. Fummi, and D. Sciuto, “Implicit test generation for behavioral VHDL
models,” in Proc. Int. Test Conference, 1998, pp. 587 – 596.

[11] A. Fin and F. Fummi, “A VHDL error simulator for functional test generation,” in
Proc. Design, Automation and Test in Europe, 2000, pp. 390 – 395.

[12] A. Gluska, “Coverage-oriented verification of banias,” in Proc. Design Automation
Conference, 2003, pp. 280 – 285.

[13] R. Hamlet, “Testing programs with the aid of a compiler,” IEEE Trans. Software
Engineering, vol. SE-3, no. 4, pp. 279 – 290, July 1977.

[14] M. Hampton and S. Petithomme, “Leveraging a commercial mutation analysis tool
for research,” in Proc. Testing: Academic and Industrial Conference Practice and
Research Techniques - Mutation, 2007, pp. 203 – 209.

[15] W. Howden, “Weak mutation testing and completeness of test sets,” IEEE Trans.
Software Engineering, vol. SE-8, no. 4, pp. 371 – 379, July 1982.

[16] Y. Jia and M. Harman, “An analysis and survey of the development of mutation
testing,” IEEE Transactions on Software Engineering, vol. 35, no. 6, pp. 1 – 32,
2010.

[17] T. Lv, H. wei Li, and X. wei Li, “Automatic selection of internal observation signals
for design verification,” in Proc. VLSI Test Symposium, 2009, pp. 203 –208.

[18] J. C. Miller and C. J. Maloney, “Systematic mistake analysis of digital computer
programs,” Commun. ACM, vol. 6, pp. 58 – 63, Feb. 1963.

[19] R. Namballa, N. Ranganathan, and A. Ejnioui, “Control and data flow graph
extraction for high-level synthesis,” in Proc. IEEE Annual Symposium on VLSI,
Feb. 2004, pp. 187 – 192.

[20] A. Offutt, “The coupling effect: fact or fiction,” in Proc. Symp. Software Testing,
Analysis, and Verification, 1989, pp. 131 – 140.

[21] A. J. Offutt and R. H. Untch, “Mutation 2000: Uniting the orthogonal,” in Proc.
Mutation, 2000, pp. 45 – 55.

[22] A. J. Offutt, “Investigations of the software testing coupling effect,” ACM Trans.
Software Engineering and Methodology, vol. 1, pp. 5 – 20, Jan. 1992.

[23] S. Tasiran and K. Keutzer, “Coverage metrics for functional validation of hardware
designs,” IEEE Design and Test of Computers, vol. 18, no. 4, pp. 36 – 45, Jul./Aug.
2001.

[24] C.-Y. Wang, S.-W. Tung, and J.-Y. Jou, “On automatic verification pattern gener-
ation for soc with port order fault model,” IEEE Trans. Computer-Aided Design,
vol. 21, no. 4, pp. 466–479, April 2002.

[25] M. Woodward and K. Halewood, “From weak to strong, dead or alive? an analysis
of some mutation testing issues,” in Proc. Workshop Software Testing, Verification,
and Analysis, 1988, pp. 152 –158.

[26] S.-C. Wu, C.-Y. Wang, and Y.-C. Chen, “Novel probabilistic combinational equiva-
lence checking,” IEEE Tran. Very Large Scale Integration (VLSI) Systems, vol. 16,
no. 4, pp. 365–375, April 2008.

