
Accurately Timed Transaction Level Models for
Virtual Prototyping at High Abstraction Level

Kun Lu, Daniel Müller-Gritschneder and Ulf Schlichtmann
Institute for Electronic Design Automation

Technische Universität München, Munich, Germany

Abstract—Transaction level modeling (TLM) improves the
simulation performance by raising the abstraction level. In the
TLM 2.0 standard based on OSCI SystemC, a single transaction
can transfer a large data block. Due to such high abstraction, a
great amount of information becomes invisible and thus timing
accuracy can be degraded heavily.

We present a methodology to accurately time such block
transactions and achieve high simulation performance at the
same time. First, before abstraction, a profiling process is
performed on an instruction set simulator (ISS). Driver functions
that implement the transfer of the data blocks are simulated.
Several techniques are employed to trace the exact start and
end of the driver functions as well as HW usages. Thus, a
profile library of those driver functions can be constructed. Then,
the application programs are host-compiled and use a single
transaction to transfer a data block. A strategy is presented that
efficiently estimates the timing of block transactions based on
the profile library. It is the first method that takes into account
caching effects that influence the timing of block transactions.
Moreover, it ensures overall timing accuracy when integrated in
other SW timing tools for full system simulation. Experimental
results show that the block transactions are accurately timed,
with average error less than 1%. At the same time, the simulation
gain can be up to three orders of magnitude.

I. INTRODUCTION

Virtual prototypes (VPs) are prevalently adopted in industry
for the development and verification of embedded SWs. Data
communication between the HW modules in VPs can be mod-
eled at various abstraction levels. Transaction level modeling
(TLM) models the communication at high abstraction level
and thus provides high simulation performance.

A. Abstraction Level of Data Flow

There have been various interpretations of abstraction levels
in the domain of SoC. In the context of TLM, we consider the
abstraction of the data flow. Accordingly, abstraction levels are
derived from the granularity of the data flow. The term TLM
can be misleading in that a transaction does not bind to a
single abstraction level. Researchers have attempted to propose
corresponding terms for transactions at different abstraction
levels. Ref. [1], [2] use packet-level TLM or word-level TLM
for transactions that transfer packets or bus words. Ref. [3]
uses TLM+ transaction to refer to a transaction that transfers
a data block. The TLM 2.0 standard [4] uses the term generic
payload to incorporate the transactions at different abstraction

Dev1
STAT reg
CTRL reg
ICU reg

DATA reg

MEM

B

U

S
CPU

read(Dev1,
buf,100)

OS
Dev1_drv

$D

$I

B

U

S

Dev1
STAT reg
CTRL reg
ICU reg

DATA reg

MEM
CPU

read(Dev1,
buf,100)

OS
Dev1_drv

$D

$I

(a) Before abstraction: many word transac-
tions evoked by the driver function

(b) After abstraction: complete data block
transferred in a single TLM2.0 transaction.

transaction of a bus word transaction of a data block

Fig. 1. Abstraction of the data flow.

levels. In this paper, to avoid ambiguity, we refer to a trans-
action of a bus word as a word transaction and a transaction
of a data block as a block transaction. Correspondingly, word
transactions reside at the bus word level and block transactions
reside at the block level.

B. CPU Model for SW Simulation

Two main paradigms exist to simulate an application pro-
gram on a VP. The program can be cross compiled to the bi-
nary code of the embedded target CPU. Then an ISS interprets
and executes the binary as the target CPU does. An ISS is often
used as the golden reference for performance estimation, but it
is prohibitively slow to simulate large programs. As a remedy
for this simulation speed problem, an alternative paradigm
compiles the program directly for the host CPU and executes
it on the host CPU thereupon. The program is annotated with
timing information for performance estimation [5], [6].

Data transfers between I/O devices and memory are imple-
mented by driver functions [7], [8]. As illustrated in the left
part of Fig. 1, to transfer a single data unit in the block, the
driver function can invoke many word transactions to access
memory, initialize hardware modules, as well as implement
the interrupt or polling protocol. At block level, the program
can use a single block transaction to transfer the whole data
block (right part of Fig. 1), abstracting away the long sequence
of word transactions.

At block level, it becomes difficult to time the block
transactions, because a great amount of detail is missing
due to abstraction. Previously, it has not been proposed how
to extract sufficient timing characteristics to time the block
transactions. Designers often count on empirical values for
timing estimation [8], [9].978-3-9810801-8-6/DATE12/ c© 2012 EDAA

Furthermore, caching effects complicate the timing estima-
tion for the block transactions. Two block transactions can
have very different timing, even they are of the same type (e.g.,
writeUart()) and transfer the same amount of data. For the
instruction cache, the surrounding codes of a driver function
can cause cache conflicts and cache misses thereof. Besides,
there can be cache conflicts within the driver function, e.g.,
if the interrupt service routine (isr) is used to transfer each
unit of data in a block. For the data cache, cache misses
can not be determined statically, as the data locality can only
be determined dynamically during simulation. For example,
assume we call a driver function to send a data buffer from
memory to an I/O device. There can be many cache misses
if the data block is accessed for the first time. However
cache misses would not happen if we read the same block
sequentially for the second time, since the data are already
present in the data cache. As a result, the duration of the
first driver function call can be much longer than that of the
second call. Such effects of instruction and data caches, if not
handled properly, can be another prominent source of error in
the timing estimation of block transactions.

C. Our Methodology

We present a new methodology for the timing estimation of
TLMs at block level. The methodology has two main features:

The first is a profiling process. An ISS is used to simulate
only the driver functions that implement the transfer of data
blocks. The entry and exit instruction addresses of those driver
functions are obtained using debug information. Thus, the
exact start and end of those driver functions are traced non
intrusively. Further, all HW accesses during the execution of
each driver function are traced. Then, the trace file is parsed
to construct a profile library for the examined driver functions.

The second feature is a new timing estimation strategy
for fast simulation at block level. For a particular block
transaction, its timing consists of a static timing part and a
dynamic timing part:
• Static timing estimation: The profile library is queried

using the type (e.g., writeUart() or readCamera()) of the
considered block transaction. The static timing part in
the estimated duration is calculated by multiplying the
average time per data unit transfer with the size of the
data block.

• Dynamic timing estimation: This is the first method to
handle the caching effects of both the instruction and
data caches. The instruction cache timing behavior is
simulated using the address space stored in a block
transaction’s profile. The timing behavior of the data
cache is simulated by applying data flow analysis to
obtain the address of data memory accesses.

With the presented methodology, timing at block level is
estimated with high accuracy. Experimental results show an
average timing estimation error less than 0.5%, while the
simulation gain can be up to three orders of magnitude. The
remainder of this paper is organized as follows: Section II
describes related work. Section III and IV present the two main

steps in timing estimation of block transactions. Section V
shows the efficacy of the proposed method with experimental
results. Section VI concludes this paper.

II. RELATED WORK

In the simulation of embedded SWs, timing simulation
has been considered by researchers to be orthogonal to the
functional simulation. Accordingly, the simulation can be per-
formed untimed (programmer’s view) or timed (programmer’s
view with time) [10]. As for the timing of transactions, loosely
timed or approximately timed styles have been proposed
by [4]. Up to now, a majority of previous approaches aim
to time the transactions at word level [11], [12].Efficient
methods to time block transactions have not been proposed.
For example, authors in [8] use time-consuming heuristic
manual fitting to annotate timing of block transactions. Ref. [9]
uses an approximate estimation to time the block transactions.
Both of them do not consider the complex caching effects
described in Sec. I.

Eventually, timed block transactions should be integrated
into SW timing annotation tools ([5], [6]) to enable full system
simulation. Currently, these tools focus on timing of a program
without involving OS or I/O devices (referred to as bare metal
mode [13]). When integrated together, the interaction between
the block transactions and the rest of the program affect
the timing of each other (e.g., they have instruction cache
conflicts). To ensure timing accuracy in full system simulation,
proper measures should be taken in the timing estimation of
block transactions.

III. TRACING AND PROFILING TOOL CHAIN

The profiling process extracts the timing characteristics for
the driver functions in ISS simulation. A profile function,
which is independent of the application program, is used to
evoke the driver functions of different types to transfer data
blocks. Tracing of the driver functions is given in Sec. III-A.
The construction of the profile function and the extracted
profiles are explained in Sec. III-B.

A. Tracing mechanism

The tool first extracts the entry and exit instruction addresses
of all the functions with the help of debuggers, as shown in the
left part of Fig. 2. Those addresses are noted as the instruction
space boundaries (isb). Then a SW monitor is added to the
ISS. At the start of simulation, the SW monitor reads in the
isbs of all the functions. During simulation, the ISS provides
the following information to the SW monitor for each binary
instruction it simulates: the instruction code and the address of
this instruction. If the SW monitor detects that the instruction
enters or exits a function (e.g. jal or jr for a MIPS CPU),
then it checks the address against those extracted isbs. In this
way, the start and end of the functions, including the driver
functions, can be traced exactly. In addition, HW activities are
also traced, including the access of a module, cache misses,
etc. As a result, tracefiles and waveforms are generated.

Profile.c

*.bin

write_uart:
entry: 0x100
exit: 0x200 ... cross

compile

debug

SW monitor
...

trace
file

...

//Apps
...
write_pkg(uart, buf1, 100); Profile

library
type compiled for host CPU

access;
imem
timing;

Fig. 2. Fully automated tool chain.

TABLE I
SAMPLE PROFILE FOR A DRIVER FUNCTION writeUart()

Type writeUart
Ave. duration per data unit 8.8 us
Instr. address space 0x3020, 0x3040, 0x3060, 0x20, ...

B. The profile library

In the profile function, a driver function is called twice
consecutively to transfer the same block. For the second call,
the driver function’s instructions and the transferred data block
are already loaded in the caches, thus dynamic caching effects
are excluded. So, traces of the second call are parsed to extract
the profiles for the driver functions of each type. The profile
includes statically determined timing parameters, instruction
memory accesses and other HW usages. A sample profile for
the driver function writeUart() is given in Tab. I. It provides
the following information:

1) The average duration to transfer one data unit of a block
(a char in this case) is 8.8 us. The average duration is
calculated by dividing the duration of the second driver
function by the block size.

2) Its instruction address space is constituted by a sequence
of addresses: 0x3020, 0x3040, etc. Here, an address is
truncated to a multiple of the size of a cache line (32
bytes). Thus, 0x3020 represents an address range from
0x3020 to 0x303f. If an instruction cache miss occurs
due to accessing the instruction at 0x3028, 8 instructions
(4 bytes each) starting from 0x3020 will be transferred
to the instruction cache from memory. The reason of
using such cache-line-aligned addresses is that only a
non-functional cache timing simulation will performed
(e.g., [5]). Hence, only the bits related to tag and cache
set in an address are significant. The bits to address a
byte in a cache line can be ignored. During the execution
of this driver function, the accessed instructions and data
are loaded to the caches, resulting in dynamic timing to
be analyzed in Sec. IV-B.

IV. SIMULATION AND DYNAMIC TIMING ESTIMATION

At this stage, the application program is simulated using
host compilation. One block transaction is used to transfer a
complete data block, based on the OSCI TLM 2.0 standard.
When a block transaction is initiated, its type is used to query
the profile library. Timing estimation is performed with the
profile of this block transaction. This process is illustrated in

$I misses! No more $I misses!

(a) first time calling writeUart() (b) second time calling writeUart()

Fig. 3. Waveforms of writeUart().

the right part of Fig. 2. The estimated duration of a block
transaction is the sum of a static timing part and a dynamic
timing part, as in:

Tblock = Tstatic + Tdyn (1)

The details of their derivations are given in the following.

A. Static timing

This static part in the estimated duration of a block trans-
action is calculated by multiplying the block size with the
average duration (Tave) to transfer one data unit in the block.

Tstatic = size · Tave (2)

One special issue needs to be made clear. When simulated on
ISS, the driver function can call the interrupt service routine
(isr) for every transferred data unit. It is possible that the
instructions of the isr compete on certain instruction cachelines
with the instructions of the driver function. Cache misses due
to such cache conflicts will be observed for every transferred
data unit. Since such penalty is internal to the driver function,
it is included in the profiled average duration. Hence, the
calculated static timing part in Equ. 3 can reflect the timing
behavior when internal instruction cache conflicts exist.

B. Dynamic timing

This dynamic part is to tackle dynamic caching effects
caused by both instruction and data caches in estimating the
duration of a block transaction. Accordingly, it consists of two
main components:

Tdyn = ∆TI +∆TD (3)

∆TI and ∆TD are the miss penalty of instruction and data
caches respectively. In the following, we show how to compute
these two components.

1) Timing of instruction cache accesses: There are two
observations regarding the instruction cache timing estimation.

Firstly, when a driver function is executed for the first time,
it accesses the instructions in its instruction space, which are
not yet in the instruction cache. Thus, the instruction cache can
experience many cache misses and it will access the bus many
times to load the required instructions from memory. However,
subsequent calls to this driver function will not experience
those cache misses, since the instructions have been loaded.
An example is given in Fig. 3. CPU1.write uart=1 means
the the function writeUart() is in execution. ICache.busUse=1
means the instruction cache is transfering data from memory
over bus. Fig. 3(a) is the waveform when writeUart() is called
for the first time. Many instruction cache misses occur during

CPU $D
ΔTD

0x10f000, 500

ΔTI

0x3020, 0x1040, ...
$I

Fig. 4. New cache access modes for block transactions.

the execution of writeUart(). The instruction cache accesses
bus to load the required instructions, as shown by the trace
of ICache.BusUse. In contrast, Fig. 3(b) is the trace when
writeUart() is called for the second time subsequently. No
instruction cache misses occur.

Secondly, the surrounding codes of a driver function might
replace the driver function’s instructions in the instruction
cache and introduce additional cache misses. Consider the
code in Lis. 1:
1 : . . .
2 : w r i t e (dev1 , buf1 , s t r l e n (buf1)) ;
3 : . . .

Listing 1. Example of cache conflicts external to a driver function

At line 2, instructions of the function strlen() might compete
with the instructions of the driver function write(dev1,...),
which affects the timing of the latter. This part of timing can
not be predicted statically, since the driver functions can be
called in various code contexts and it can not be determined
in advance whether their instructions are in cache or not.

These issues are handled as follows in our timing estimation
strategy. When a block transaction starts, the cache line
aligned instruction addresses in its instruction address space
are obtained from the profile library. They are used to simulate
the timing behavior of the instruction cache. To this end, a
new access mode is added to the cache, which is exemplified
in the left part of Fig. 4. In this mode, the cache accepts a list
of addresses as input, and calculates an overall miss penalty
(∆TI) for this address list as output. For this, the tags in the
instruction cache are simulated. This is important when timing
estimation of block transactions is integrated with SW timing
annotation tools (e.g. [5]), since both perform instruction cache
timing simulation.

2) Timing of data cache accesses: When reading/writing
a data block from/to an I/O device, data in the block are
sequentially stored to or loaded from memory. With data
cache, this process can have undeterministic cache misses and
bus accesses. Consider the case in Lis. 2.
1 : . . .
2 : r e a d (dev2 , buf2 , 100) ;
3 : r e a d (dev2 , buf2 , 100) ;
4 : . . .

Listing 2. Example of data cache dynamics

At line 2, the program reads data from device dev2 and
stores them in buf2. Assuming buf2 is used for the first time,
there will be a cache miss when storing the data to buf2[0].
In a write-back cache, the victim cacheline will firstly be
written back to memory if it is dirty. Then, assuming 32-byte
cachelines and 32-bit bus width (thus 4 bytes per word), 8
words will be transferred to cache from memory. Suppose
buf2[0] locates at the first position of the freshly loaded

Data cache misses!

(b) Reading the same block sequentially(a) First time reading a block

No data cache misses!

Fig. 5. Dynamics of data cache misses.

Fig. 6. HW architecture.

Fig. 7. Traced driver functions of writeAes and readAes.

cacheline, then the following accesses of buf2[1] until buf2[7]
will not yield cache misses. Similarly, cache misses will occur
when reading data into buf2[8], buf2[16], etc. In contrast, read
to buf2 in line 3 will not give data cache misses since buf2
has already been placed in the data cache. Fig. 5 exemplifies
such data cache dynamics.

To estimate such dynamic data cache behavior, we first
obtain the address and the size of the data block for data
cache simulation when a block transaction starts (see Fig. 4).
In this access mode, the data cache chops the address range
of the block by the size of cachelines. Then, starting from
the given address, it will sequentially access those cachelines
and simulate the cache misses. To obtain the address of a
block, we use the value of an annotated stack pointer (sp)
variable, since it gives the exact address of local variables. The
variable sp is decreased/increased by a value when a function
is entered/exited. This value is the size of the function’s local
stack. Consider the example in Lis. 3: the address for the
variable block can be expressed as sp + 20.
1 : vo id func1 () { / / assume a l o c a l s t a c k o f 200 b y t e s
2 : c h a r v a r [2 0] ; / / l o c a t e w i t h i n [sp , sp +20)
3 : c h a r b l o c k [1 0 0] ; / / l o c a t e w i t h i n [sp +20 , sp +120)
4 : . . .
5 : }

Listing 3. Sample code illustrating data address annotation

V. EXPERIMENTAL RESULTS AND ANALYSIS

In the following, profiling results based on the method
shown in Sec. III are given in Sec. V-A. Timing estimation
results based on the method discussed in Sec. IV are given in
Sec. V-B and V-C.

Fig. 8. Traced driver functions of readCamera using DMAC.

A. Set-up and profiling results

The set-up of the HW architecture is shown in Fig. 6.
The application program can initiate the following commu-

nication between I/O devices and memory:
• Write 16 bytes to AES for encryption
• Read the encrypted data back from AES
• Write an array of characters to the UART
• Read a frame from the camera, performed by CPU.
• Read a frame from the camera, performed by DMAC.
• Write a frame to the LCD, performed by CPU.
• Write a frame to the LCD, performed by DMAC.

In the profiling process, a program calls the driver functions for
the above mentioned data transfers. This program is simulated
by an ISS. Applying the technique described in Sec. III, the
trace file, waveforms and profile library are obtained. It took
around 3 minutes for the tool chain to complete the whole
profiling process. The waveform for writeUart() is already
given in Fig. 3. The waveform for writeAes() and readAes()
is given in Fig. 7. In contrast to writeUart(), AES encryption
is much faster than the UART transmission. Thus, instead of
using the isr, polling is used to wait for the encryption to be
complete. So many accesses to the AES’s status register are
observed in the waveform. The waveform for readCamera()
without using the DMAC is already given in Fig. 5. Using
the DMAC, the waveform is in Fig. 8. The waveforms for
writeLcd() are similar to those for readCamera().

B. Communication centric scenarios

The purpose of the following communication centric exper-
iments is to examine two aspects of the timed block trans-
actions: 1. How much performance gain can they contribute
alone; 2. How accurate is the timing estimation.

1) Application 1: In this case, the application program
sends 4 words (16 bytes) from buffer 1 to AES for encryption
and then reads the encrypted data back into buffer 2. It
continues until buffer 1 is encrypted. Then it sends buffer
2 to the UART for display. This process is repeated for
many rounds. The program is simulated at word level on an
ISS and at block level using host compilation, respectively.
Waveforms in Fig. 9 show the traced start and end of the
driver functions and block transactions for the first round.
The timing discrepancy at the beginning is due to booting
the system, which is not timed when the program is host
compiled. The timing of the block transactions matches closely
to that in the ISS simulation. Quantitatively, the average timing
estimation error of the block transactions is less than 1%. As
for performance, a gain of 700× is measured. This gain can

be further increased by 5× if the dynamic cache timing is not
simulated. But the timing estimation error is then enlarged
to 21%. The cache simulation overhead is large because our
cache model is implemented as a HW module in SystemC.
Besides, the SW containing cache accesses is host-compiled
into a static library, which is then compiled with the HW
system in SystemC. Thus, the cache accesses in the SW are
dynamically linked in simulation and cause large overhead.
This can be improved in the future by using a SW cache
model. Another limit of the gain is that there are 2 context
switches for each block transaction induced by (1) one wait
to perform the TLM 2.0 transaction and (2) another transaction
to check the status register of AES or UART after the block
transaction completes.

2) Application 2: In this case, the program first reads two
frames (4K words each) consecutively from the camera into
two buffers. Then it writes the buffers to the LCD module.
Such operations are repeated several times. Firstly, without
using DMAC, waveforms are given in Fig. 10, Please note
that, when reading the frame the first time, the duration of the
driver function is around 25% longer than that for the second
time. This is caused by the data cache misses, as described in
Sec. IV-B. This timing behavior is very well estimated for the
timed block transactions (see Fig.10(b)). The average timing
estimation error for the block transactions is less than 0.5%.
The performance gain is around 1200×. This gain is high,
since the block size is large. This gain can be further increased
by 4× if the dynamic cache timing simulation is disabled, at
the expense of an increased timing estimation error.

Then the test is performed with DMAC enabled. Now, to
read the camera, the ISS only needs to configure the DMAC
(see Fig. 8). Then the DMAC initiates transactions with burst
length of 32 to establish high speed transfer from the camera.
Thus, the simulation time is substantially shorter for the ISS.
Consequently, the measured gain of block based simulation is
lowered to only around 90×. The timing estimation accuracy
is still high, with an average error less than 0.5%.

C. Computation centric scenario

In this test, the timing estimation of block transactions is
integrated into a SW timing annotation tool. The application
program reads a frame from the camera. Then it performs
an Rgb to YCbCr conversion algorithm and mixes the con-
verted YCbCr frame with another YCbCr frame. When the
program is host compiled, timing information is annotated in
the conversion and mixing algorithm. The block transactions,
which read frames from the camera, are timed by the proposed
method. As is shown in Fig. 11, the timing of block transac-
tions matches closely the timing in ISS based simulation. In
the worst case, the estimated duration of a block transaction is
6% shorter. This is because the applied SW timing tool does
not perform data memory annotation, which can cause data
cache conflicts and hence prolong a block transaction. The gain
in this case is close to 2000×. One reason for this high gain
is a fast cache simulation strategy in the annotated application
program. This strategy symbolizes the cache simulation of a

(a) Results when the program is executed on ISS.

(b) Results when the program is host compiled and timed at block level.

Fig. 9. Timing comparison for application 1.

A is around 25% longer than B, though they transfer the same amount of data
A B

(a) Results when the program is executed on ISS.

(b) Results when the program is host compiled and timed at block level.

Fig. 10. Timing comparison for application 2 without using DMAC.

(a) Results when the program is executed on ISS.

(b) Results when the program is host compiled and timed at block level.

Fig. 11. Timing comparison after integration with a SW timing tool.

loop body into a function and moves it outside of the loop
body. This function uses the loop iteration count as a parameter
to estimate the cache misses. Therefore, the overhead of the
cache simulation is very little for a loop with large iteration
counts, such as the case of the examined program.

VI. CONCLUSION

This paper proposes a methodology to time block transac-
tions for TLM based virtual prototypes. First, a tracing and
profiling process is automated to contruct a profile library for
the block transactions. Then, a timing estimation strategy is
employed to time the block transactions with their profiles.
Various caching effects at both the instruction and data caches
are handled effectively by the timing estimation strategy.
Experiments show that the block transactions are accurately
timed (average error less than 1%). At the same time, the
simulation gain can be up to three orders of magnitude.

ACKNOWLEDGEMENTS

This work has been supported by the German Federal
Ministry of Education and Science (BMBF) in the SANITAS
project under grant nr. 01 M 3088.

REFERENCES

[1] A. Wieferink, M. Doerper, T. Kogel, et al., and H. Meyr, “Early ISS Inte-
gration into Network-on-Chip Designs,” in International Conference on
Embedded Computer Systems: Architectures, Modeling, and Simulation
(SAMOS), 2004.

[2] T. Kogel, R. Leupers, and H. Meyr, Integrated System-Level Modeling of
Network-on-Chip enabled Multi-Processor Platforms. Springer, 2006.

[3] W. Ecker, S. Heinen, and M. Velten, “Using a dataflow abstracted virtual
prototype for HdS-design,” in IEEE/ACM Asia and South Pacific Design
Automation Conference (ASP-DAC), 2009, pp. 293–300.

[4] OSCI, OSCI TLM-2.0 Language Reference Manual, 2009.
[5] J. Schnerr, O. Bringmann, A. Viehl, and W. Rosenstiel, “High-

performance timing simulation of embedded software,” in ACM/IEEE
Design Automation Conference (DAC), 2008.

[6] D. Mueller-Gritschneder, K. Lu, and U. Schlichtmann, “Control-flow-
driven Source Level Timing Annotation for Embedded Software Models
on Transaction Level,” in EUROMICRO Conference on Digital System
Design (DSD), Sep. 2011.

[7] P. Gerin, X. Guerin, and F. Petrot, “Efcient Implementation of Native
Software Simulation for MPSoC,” in Design, Automation and Test in
Europe (DATE), 2008.

[8] W. Ecker, V. Esen, and M. Velten, “TLM+ modeling of embedded
HW/SW systems,” in Design, Automation and Test in Europe (DATE),
2010.

[9] M. Ariyamparambath, D. Bussaglia, B. Reinkemeier, T. Kogel, and
T. Kempf, “A Highly Efficient Modeling Style for Heterogeneous Bus
Architectures,” in IEEE International Symposium on System-on-Chip,
2003.

[10] A. Donlin, “Transaction Level Modeling: Flows and Use Models,” in
CODES ISSS, 2004.

[11] S. Stattelmann, O. Bringmann, and W. Rosenstiel, “Fast and Accurate
Resource Conflict Simulation for Performance Analysis of Multi-Core
Systems,” in Design, Automation and Test in Europe (DATE), 2011.

[12] E. Cheung, H. Hsieh, and F. Balarin, “Memory subsystem simulation in
software TLM/T models,” in IEEE/ACM Asia and South Pacific Design
Automation Conference (ASP-DAC), 2009.

[13] O. Almer, I. Boehm, T. Edler, B. Franke, S. Kyle, V. Seeker, C. Thomp-
son, and N. Topham, “Scalable Multi-Core Simulation Using Parallel
Dynamic Binary Translation,” in International Conference on Systems,
Architectures, Modeling and Simulation (SAMOS), 2011.

