
Dual Greedy: Adaptive Garbage Collection for
Page-Mapping Solid-State Disks

Wen-Huei Lin
Department of Computer Science
National Chiao-Tung University

Hsin-Chu, Taiwan, ROC
linwh.tw@gmail.com

Li-Pin Chang
Department of Computer Science
National Chiao-Tung University

Hsin-Chu, Taiwan, ROC
lpchang@cs.nctu.edu.tw

Abstract—In the recent years, commodity solid-state disks have
started adopting powerful controllers and implemented page-
level mapping for flash management. However, many of these
models still use primitive garbage-collection algorithms, because
prior approaches do not scale up with the dramatic increase of
flash capacity. This study introduces Dual Greedy for garbage
collection in page-level mapping. Dual Greedy identifies page-
accurate data hotness using only block-level information, and
adaptively switches its preference of victim selection between
block space utilization and block stability. It can run in constant
time and use very limited RAM space. Our experimental results
show that Dual Greedy outperforms existing approaches in terms
of garbage-collection overhead, especially with large flash blocks.

I. INTRODUCTION

Solid-state disks offer a less invasive way to deploy flash
storage in mobile computers. They implement a firmware
layer, i.e., the flash-translation layer, to emulate a collection of
disk sectors and hide flash management from the hosts. Flash
memory is a kind of erase-before-write non-volatile memory,
and the unit of erasure is much larger than that of read/write.
Thus, flash-translation layers handle data updates in a out-of-
place manner and adopt a mapping scheme to translate logical
sector numbers into physical flash locations.

Choosing the resolution of address mapping is an important
design issue of flash-translation layers. Although page-level
mapping has a natural appeal of its high write-performance, it
requires very large mapping tables which are too large to fit
in the RAM space of disk controllers. Thus, many entry-level
flash-storage devices such as thumb drives adopt block-level
mapping for the minimal table footprints. Many solid-state
disks adopt hybrid mapping for good balance between write
performance and table size. For example, solid-state disks
based on the disk controller GP5086 from Global Unichip
implement hybrid mapping and store their mapping table in
the 64 KB embedded SRAM. Recently, advanced solid-state
disks started adopting powerful controllers. For example, the
Intel 510 series employ Marvell’s dual-core disk controller
Van Gogh with an accompanying 128 MB DDR RAM chip.

This work is in part supported by a research grant NSC-98-2221-E-009-
157-MY3 from National Science Council, Taiwan, ROC and a research project
form Global Unichip Corp.

978-3-9810801-8-6/DATE12/ c⃝2012 EDAA

These solid-state disks implement page-level mapping as their
controllers have rich computational resources to do so.

Out-of-place updates produce outdated data in flash mem-
ory. Flash-translation layers must timely perform garbage col-
lection that erases flash space occupied by stale data into free
space. In addition to flash erasure, garbage collection could
also involve copying valid data. Because garbage-collection
activities could delay the processing of host requests, flash-
translation layers adopt two strategies to reduce this impact: 1)
data separation, which identifies frequently updated data (i.e.,
hot data) and writes data having similar update frequencies to
nearby flash space, and 2) victim selection, which prevents
garbage collection from copying valid data that will get
invalidated in the near future.

Even though prior studies have proposed various tech-
niques of garbage collection for page-level mapping [2], [4],
[7], many commodity page-mapping solid-state disks still
use primitive garbage collection algorithms. This is mainly
because, when these prior approaches were introduced, the
mainstream flash capacity was quite small at that time. These
prior techniques do not scale up to gigabyte-level flash. In
addition, these prior techniques use many parameters that
require manual tuning, making them not useful in real prod-
ucts. Recent studies investigated garbage collection for hybrid
mapping [8], [9], but these results are not applicable to page-
level mapping.

This study presents Dual Greedy for efficient garbage col-
lection in page-level mapping. Dual Greedy is designed to be
adaptive and scalable. It requires only block-level information
but identifies data hotness at the page level. When selecting
victim blocks for garbage collection, Dual Greedy dynamically
switches its preference between block space utilization and
block stability. Dual Greedy requires no static parameters and
is adaptive to various types of host workloads. The execution
time of Dual Greedy is not related to the flash capacity, i.e., it
can run in constant time. Compared to prior approaches, Dual
Greedy is simple yet very efficient.

The rest of this paper is organized as follows: Section
II introduces the fundamental issues of garbage collection
for page-level mapping. Section III presents a strategy for
identifying hot data and separating hot data from non-hot
data in flash. Section IV shows an adaptive policy for victim



Fig. 1. Separating hot data and non-hot data in flash blocks improves garbage-
collection performance.

selection. Section V are experimental results, and this paper
is concluded in Section VI.

II. BACKGROUND

A. Page-Level Mapping

A piece of flash memory consists of an array of blocks,
and a flash block is of a fixed number of pages. Flash pages
cannot be re-written unless they are erased. Because flash
erases in terms of blocks instead of pages, data updates
in flash are out-of-place to avoid erasing a flash block for
updating a page. As the physical locations of data change after
updates, solid-state disks implement a firmware layer called
the flash-translation layer that maps logical sector numbers to
flash memory addresses. The flash-translation layer adopts a
mapping table for address translation, and the mapping table
resides in the RAM of the disk controller. Address translation
at the page level delivers better random-write performance
because new data can be written to any free space in flash
memory. However, page-level mapping requires large mapping
tables. Gupta et al. and Qin et al. addressed this issue by
caching portions of the entire mapping table [3], [10].

Updating data out of place leaves outdated versions of data
in flash. When running low on free space, the flash-translation
layer starts reclaiming available space occupied by invalid data
via block erasure. Before erasing a block, the flash-translation
layer must move all valid data out of this block. Such a series
of copy and erase activities for reclaiming free space is referred
to as garbage collection.

There are two important techniques pertaining to garbage
collection for page-level mapping: hot/non-hot separation and
victim selection. Hot data refers to the data that are frequently
updated by the host. Hot/non-hot separation (or simply data
separation) identifies the hotness of data upon write and then
writes hot data and non-hot data to different flash blocks.
Figure 1 shows how hot/non-hot separation benefits garbage
collection. In Fig. 1(a), updating hot data produces two pages
of invalid data in each of the two blocks. Erasing anyone of
the two blocks effectively reclaims two pages of free space.
In Fig. 1(b), because all hot data reside in the same block,
after the updates to hot data, garbage collection can reclaim
an entire block of free space without copying any valid data1.

1Separating hot data from non-hot data has little effect on hybrid mapping
[8], [9], because merge operations neutralize any efforts of data separation.

Fig. 2. The structure of the multi-LRI (least-recently invalidated) lists. A
flash block has four pages in this example.

The victim-selection policy selects flash blocks as victims
for garbage collection. A good victim selection policy should
reduce the page-copy overhead. This policy should select
flash blocks with small amounts of valid pages for overhead
reduction in the short term. However, because hot data will
soon become invalid, for overhead reduction in the long term,
victim selection should not choose blocks having many hot
(and valid) data even if these blocks are good candidates for
short-term consideration.

B. Hot/non-Hot Separation

The flash-translation layer performs data separation before
allocating flash space to data. The timings include processing
write requests from the host and copying valid data during
garbage collection. Kawaguchi [7] proposed writing newly
written data and garbage-collected data to different flash
blocks, because the valid data in victim blocks have remained
alive for some periods of time and they are less hotter than
the new data. However, this method ignores that hot data
and non-hot data coexist in the new data. Chiang et al. [2]
extended this concept to using multiple hotness levels of data.
This approach, called Dynamic Data Clustering (i.e., DAC),
logically partitions the flash space into regions. Each of the
regions maintains a flash block for writing data and adopts a
threshold for region elevation. A piece of data can be young
or old with respect to the age threshold of its resident region.
DAC elevates young data to higher-level regions on write, and
demotes old data to lower-level regions on garbage collection.
However, the performance of DAC is very sensitive to the
selection of the total number of regions and the age thresholds
of regions. It also requires prohibitively large RAM space for
storing page-level age information.

Chang proposed identifying write requests smaller than a
size threshold as carrying hot data [1]. However, this method
overlooks that small write requests can also carry non-hot
data. Hsieh et al. [4] proposed a frequency-based method of
identifying hot data. This method uses a table of counters and
a set of hash functions that map every logical sector number
to several counters. A piece of data is considered hot if all
the counters mapped to it are larger than a threshold. Im and
Shin proposed the n-chance policy [5] that considers a class of
warm data. These two methods are not adaptive because they
have many parameters that require manual tuning for optimal



0

100000

200000

300000

400000

F
re
q
u
e
n
c
ie
s

Page lifetimes

Fig. 3. The frequency distribution of page lifetimes produced by servicing
100,000 page-write requests of the disk workload from a Windows desktop.

performance.

C. Victim Selection

The well-known greedy policy [7] picks up a block of the
largest amount of invalid data for garbage collection. However,
realistic workloads have temporal localities of write, and even
though a block is having the smallest amount of valid data
among all blocks, this block may may continue to receive page
invalidation. Thus, the greedy policy could result in premature
erasure of flash blocks.

The cost-and-benefit policy proposed by Kawaguchi et al.
[7] tries to avoid premature block erasure by giving lower
priority of garbage collection to flash blocks that recently
receive page invalidations. This method scores every flash
block by a heuristic function a×(1−u)

2u and erases the most-
scored block for reclaiming free space. Note that a and u
in this function stand for the age and space utilization of a
block, respectively. Chiang et al. proposed Cost Age Times
(i.e., CAT) that takes both garbage collection and wear leveling
into consideration using the function u

((1−u)×a)×t , where t is
the block erase count [2]. CAT erases the least-scored block.
However, both cost-and-benefit and CAT may need to re-score
all blocks to select a victim of garbage collection. They suffer
from poor scalability as the mainstream flash capacity has
grown to several gigabytes when we wrote this paper [11].

III. DATA SEPARATION POLICY

A. The Basic Data Structure: Multi-LRI Lists

The garbage-collection algorithm to be proposed is based
on an essential data structure called multi-LRI (least-recently
invalidated) lists. Figure 2 depicts the structure of the multi-
LRI lists. This data structure has p parallel lists, where p is the
total number of pages in a flash block. The elements of the lists
are flash blocks. A flash block hooks on the level-i list if this
block has i pages of valid data. Thus, the level-one list consists
of flash blocks having exactly one page of valid data. If a flash
block at level i receives a page invalidation, then this block is
promoted to the (i-1)-th level list as the rightmost element (i.e.,
the list tail) at the new level. This way, the leftmost blocks
(i.e., the list heads) are the least-recently invalidated blocks of
every list. Note that the “level-0” list is not in the multi-LRI
lists because blocks without any valid page data are no doubt
the best candidates for garbage collection.

Fig. 4. Computing page lifetimes with block-level information. Each block
stores the times of its first page write and its latest page invalidation.

B. Identifying Hot Data by Page Lifetimes

Realistic workloads have temporal localities of writing disk
sectors. If a disk sector is recently modified by the host, then
this sector will be modified for many times in the near future.
Let the lifetime of a flash page (not a logical page) denote
the total number of host write-requests arrived at the storage
device during the period between writing new data to this page
and invalidating (updating) data in this page. A valid flash page
does not have a lifetime as its data are not invalidated yet. The
rest of this paper adopts the total number of host write-requests
arrived as the logical unit of time.

We collected the page lifetimes produced by servicing
100,000 page writes after a short warm-up of 400,000 page
writes under the disk workload of a Windows desktop2. Note
that page invalidations are irrelevant to flash management
because they are host-level behaviors. Figure 3 shows that
the frequency distribution of the collected page lifetimes is
bimodal. In other words, the page lifetimes contributed by
hot data are much shorter than that contributed by non-hot
data. Thus, this study proposes using a lifetime threshold
of identifying hot data. When a new page write arrives, it
invalidates the latest copy of the page data and produces a page
lifetime. If this page lifetime is shorter than the threshold, then
the data of the new page write is recognized as hot data. The
flash-translation layer should use two flash blocks and write
hot data and non-hot data separately to these two blocks3.

A technical question is then how to adaptively set the
lifetime threshold for different types of workloads. Let the
top level of the multi-LRI lists be the highest level which has
at least one block. This study proposes using the largest page
lifetime of the blocks at the top level as the lifetime threshold.
Because hot data produce most of the invalid pages in flash,
blocks having many hot data will reach the top-level list in
a short period of time. Thus, the largest page lifetime of the
top-level blocks is a good initial reference of data hotness.
Provided that hot/non-hot separation is effective, there will be
more blocks reach to an even higher level of the multi-LRI
lists, and this change will further refine the age threshold.

2This is the PC workload in our experiment section.
3The flash-translation layer uses another flash block for writing garbage-

collected data, because many of these data are non-hot or even immutable
and they should not be mixed with new data.



0

10000

20000

30000

40000

50000

60000

70000

F
re
q
u
e
n
c
ie
s

Block-dormant periods

Fig. 5. The frequency distribution of block-dormant periods produced by
servicing 100,000 page-write requests of the disk workload from a Windows
desktop.

C. Computing Page Lifetimes with Reduced Overheads

The proposed method of hot/non-hot separation requires
checking page-level lifetime information. However, storing
such all pages’ lifetime information requires a large amount
of RAM space. To save RAM space, this study proposes
computing page lifetimes using block-level information. This
technique is based on an observation that, since the flash-
translation layer writes to the first page of a block, the rest of
the pages in this block will all be written after a short period
of time. Figure 4 shows a scenario of writing data to free
space in a block. The flash-translation layer appends new data
to the same block until this block runs out of free space. Thus,
the time of writing the first page in a block can serve as an
approximation of the times of writing data to the other pages
in this block.

The flash-translation layer stores the first page-write time
and the latest page-invalidation time of every block in RAM.
The difference between these two times of a block represents
the largest page lifetime of this block (as Fig. 4 shows).
Upon garbage collection, the flash-translation layer updates
the page-lifetime threshold with the maximum of the largest
page lifetimes of blocks at the top-level list. Our current design
checks only a fixed number (e.g., 8) of the least-recently
invalidated blocks at the top-level list. This is because 1)
less-recently invalidated blocks usually contribute large page
lifetimes and 2) garbage collection frequently removes blocks
from the top-level list for reclaiming free space and the total
number of blocks at the top level is small during runtime.

Upon the arrival of a page write, the flash-translation layer
first finds the page and block storing the latest version of this
data. This page write produces a page lifetime that is equal
to subtracting the found block’s first page-write time from the
current time. If this page lifetime is shorter than the threshold,
then the new data are considered hot.

IV. VICTIM SELECTION POLICY

A. Block Stability

Garbage collection selects blocks having low space utiliza-
tions for reducing its overhead in the short term. It must
also avoid premature erasure of blocks for overhead reduction
in the long term. Checking whether erasing a flash block is
premature or not is not as straightforward as checking the

Fig. 6. The two modes of Dual Greedy. (a) The utilization mode. Dual Greedy
selects the stablest one among the blocks having the lowest space utilization.
(b) The stability mode. Dual Greedy selects the block whose space utilization
is the lowest among the blocks that are stabler than the only top-level block.

space utilization of this block. In addition to space utilization,
this study proposes using block stability as a reference for
victim selection.

Observe the arrivals of page invalidations at flash blocks.
Let the dormant period of a block be the interval between the
current time and its latest page invalidation. Figure 5 shows the
frequency distribution of the block dormant-periods produced
by servicing 100,000 page-write requests. We recorded the
lengths of block dormant-periods upon every page invalidation.
This observation was made at the same time as that of Figure
3. The distribution shows that page invalidations produce a
large number of short dormant periods. In other words, if a
flash block has a short dormant period, then this block will
receive another page invalidation sooner than a block of a long
dormant period. Thus, block stability is a relative measure:
blocks of long dormant periods are said to be more stable
than blocks of short dormant periods.

B. The Dual-Greedy Strategy

This section introduces Dual Greedy, which is a strategy for
victim selection that adaptively switches between utilization
and stability. Dual Greedy has two modes, and its current mode
is decided by how many blocks that the top level of the multi-
LRI lists has. When the top-level list has more than one block,
Dual Greedy will switch to the (space) utilization mode. As
Fig 6(a) shows, Dual Greedy prefers utilization to stability in
this mode, and chooses the stablest block from the top-level
list as the victim. This block is the list head (i.e., the leftmost
element) of the top-level list because this list head has the
largest dormant period among the blocks at the top level.

As the demand for free space increases, garbage collection
repeatedly removes blocks from the top-level list for erasure.
Sometimes the top-level list has only one block left under high
pressures of garbage collection. In this case, all flash blocks do
not have long dormant periods, and thus Dual Greedy prefers
stability to utilization for avoiding premature block erasure. It
switches to the stability mode when there is only one block
at the top level. In this mode, Dual Greedy selects the block
whose utilization is the smallest among the blocks that are
more stable than the only block at the top level. As Fig 6(b)
shows, Dual Greedy rules out the blocks in the shadowed



TABLE I
CHARACTERISTICS OF THE EXPERIMENTAL WORKLOADS

region because they are not more stable than the only top-
level block. Dual Greedy selects the block whose utilization
is the lowest among the list heads not in the shadowed region.
This is because if the list head of a level is not more stable
than the top-level block, then none of the blocks at this level
would be. In the worst case that no list heads are more stable
than the top-level block, then Dual Greedy selects the only
top-level block as the victim.

The proposed victim selection strategy requires blocks’ lat-
est page-invalidation times to compute block dormant periods.
The data separation policy also utilizes this information and
can share it with the victim-selection policy.

V. EXPERIMENTAL RESULTS

A. Experimental Setup and Performance Metrics

We have built a simulator for performance evaluation.
This simulator implements representative designs of flash-
translation layers: 1) FAST [8], which is based on hybrid
mapping, 2) page-level mapping with the greedy policy [7]
(PL+greedy), 3) DAC [2], which is based on page-level
mapping and uses the cost-age-time policy (CAT) for garbage
collection, 4) SuperBlock [6], which uses page-level mapping
inside of groups of flash blocks, and 5) Dual Greedy. Notice
that PL+greedy uses separated blocks for writing new data and
garbage-collected data. DAC and SuperBlock adopted their
best parameter settings found by off-line exhaustive search.
DAC ignored wear leveling for its best performance of garbage
collection.

There are three types of workloads in our experiments.
The first workload was collected from a desktop PC running
Windows XP whose file system was NTFS (i.e., the PC
workload), the second workload is generated from a portable
media player (i.e., the SEQ workload) that repeatedly wrote
large files. The last one (i.e., the RND workload) is obtained
from the industrial-standard benchmark tool Iometer with a
4KB request size and 100% random write. Table I is a
summary of these workloads. This study adopts the total erase
count as the primary performance metric of garbage collection.

B. Host Workloads

This experiment adopts the geometry of a typical NAND
flash [11] whose block size and page size are 512 KB and
4 KB, respectively. Let the over-provisioning ratio be the
fraction of flash space provided as spare space. For example,
if the logical disk is 40 GB, then with a 2.5% over-provision
ratio the flash size is 40×(1+2.5%)=41 GB.

Figure 7(a) shows the results under the PC workload. This
type of workload has many temporal localities of write. Dual
Greedy greatly outperformed FAST, and this advantage is

obvious especially when the over-provision ratio was large.
This is because large spare size improves the effectiveness
of hot/non-hot separation. In contrast, the merge-based FAST
did not much benefit from using large spare space. Compared
to SuperBlock, Dual Greedy does not confine page-level
mapping to small block groups, and thus Dual Greedy has
more flexibility of separating hot data from non-hot data.
Dual Greedy also surpassed PL+greedy because the proposed
policies for data separation and victim selection performed
better than the primitive counterparts in PL+greedy.

The experiment for the SEQ workload used smaller over-
provision ratios to increase the pressure of garbage collection.
Figure 7(b) shows that, benefited from switch merges, FAST
delivered better performance than PL+greedy when the spare
size was very small. However, this advantage quickly dimin-
ished as the over-provision ratio increased, because PL+greedy
could always find blocks having no valid data for erasure.

Figure 7(c) shows the results under the RND workload. Su-
perBlock suffered from log-block thrashing under this random-
write pattern even when the flash spare size was very large.
FAST performed poorly when flash spare size was small
because of its extremely large associativity of log blocks.
Adding more flash spare space effectively relieved FAST of
this problem. DAC and Dual Greedy performed as good as
PL+greedy when the spare size was large, but neither of them
can outperform PL+greedy. This is because the RND workload
has a purely random write pattern. Any predictions on write
behaviors based on locality will not be useful. Thus, a flash-
translation layer could switch to the greedy policy when it
detects that the host is accessing the solid-state disk with a
purely random write pattern.

Recall that DAC requires considerable resources of time
and space, and it needs manual parameter-tuning. Dual Greedy
used very limited resources, but achieved the same or even
better performance than DAC. Later sections will provide more
discussion of resource requirements.

C. Flash Geometry

It is important to examine the performance of Dual Greedy
with coarse-grained flash geometry because parallel flash
structures such as planes, gangs, and interleaving groups would
effectively increase the flash block size. Garbage collection
becomes more difficult when the block size is large because
erasing a large flash block could involve more data copying.
This experiment adopted two geometry settings whose page
sizes and block sizes were 4 KB/512 KB and 8 KB/1 MB,
respectively. Because these two settings have different block
sizes, the Y-axis of Fig. 7(d) indicates the total numbers of
bytes erased from flash. The workload was the PC workload,
and the over-provisioning ratio was 5%. Figure 7(d) shows
that Dual Greedy had the smallest increase (i.e., 1.3 times) on
the total byte erased when switching to large blocks.

D. The Needs for Adaptiveness and Overhead Analysis

A design goal of Dual Greedy is to eliminate the needs for
static parameters. This experiment takes DAC as an example



0E+02E+54E+56E+58E+51E+6
1.25% 2.50% 5% 10%erase counts
overprovision ratios

Best setting for PCBest setting for RNDBest setting for SEQ
0E+02E+54E+56E+58E+5

1.25% 2.50% 5% 10%erase counts
overprovision ratios

PL+greedyFASTSuperBlockDACDual greedy
0E+02E+44E+46E+48E+41E+5

0.16% 0.31% 0.63% 1.25%erase counts
overprovision ratios

PL+greedyFASTSuperBlockDACDual greedy
0E+05E+51E+62E+62E+6

1.25% 2.50% 5% 10%erase counts
overprovision ratios

PL+greedyFASTSuperBlockDACDual greedy
0E+02E+114E+116E+11

4k512k 8k1mtotal bytes erased
flash geometry
PL+greedyFASTSuperBlockDACDual greedy1.5x1.4x1.6x 1.3x1.4x

Fig. 7. Experimental results. (a)-(c) Results of using different host workloads. Note that the three Y-axis scales are different. Dual Greedy greatly outperformed
SuperBlock, FAST, and page-level mapping with Greedy policy. Dual Greedy also performed as good as the resource-consuming DAC. (d) Results of using
different geometry settings. Dual Greedy incurred the smallest overhead increase when switching to a large flash block size (e) The needs for adaptive
parameter tuning. Under the PC workload, DAC performed poorly using the best static parameter settings for the SEQ or RND workload.

to show the needs for adaptive garbage collection. Recall that
DAC requires several parameters including the total number
of regions and the per-region age-threshold for elevating and
demoting page data between regions. This experiment first
found the best parameter settings for the three workloads,
and then evaluated DAC with these three sets of parameter
values under the PC workload. Figure 7(e) shows that, DAC
performed very differently with these three parameter-value
sets. In particular, under the PC workload DAC performed
poorly with the best setting of the RND workload.

Resource efficiency is also important to the design of
Dual Greedy. As mentioned in Section III-C, Dual Greedy
updates the page-lifetime threshold by checking the largest
page lifetimes of eight blocks at the top-level list. For victim
selection, the total number of flash blocks that Dual Greedy
examines is not larger than the total number of pages in a
block, as described in Section IV-B. Thus, Dual Greedy takes
constant time to pick up a victim for garbage collection. In
contrast, DAC could require re-scoring all flash blocks using
its cost-age-time function to find a victim.

As to RAM space requirements, Dual Greedy stores only
two time stamps for every flash blocks. Consider the experi-
ment with the PC workload. The flash size is 41 GB, the block
size is 512 KB, and the page size is 4 KB. Suppose that every
time stamp is of 4 bytes. Storing these time stamps requires
only ((41×230)/(512×210))×2×4=656 KB of RAM space. In
contrast, DAC stores a time stamp for every flash page, and
storing these page time stamps requires ((41×230)/(4×210))×4
= 41 MB.

VI. CONCLUSION

As flash capacity dramatically increased in the past decade,
many solid-state disks adopted hybrid mapping for good
balance between write performance and mapping-table size.
Recently, high-end solid-state disks start adopting powerful
controllers and implement page-level mapping because of the
strong demand for random-write performance.

This study investigates an adaptive and resource-efficient
garbage collection policy for page-mapping solid-state disks.
The design of the proposed method is based on two key
observations. After servicing a large number of write requests,

the produced page lifetimes have a bimodal frequency dis-
tribution, while the produced block-dormant periods have a
long-tail frequency distribution. Based on these findings, the
proposed approach, named Dual Greedy, uses only block-level
information for page-accurate identification of hot data, and it
utilizes multilevel lists of blocks for adaptive victim selection.
Dual Greedy can run in constant time with limited space, and
it is workload-adaptive. Our experimental results show that
Dual Greedy outperforms many prior approaches in terms of
garbage-collection efficiency, resource requirements, or both,
especially when the flash block size is large.

REFERENCES

[1] L.-P. Chang. A hybrid approach to nand-flash-based solid-state disks.
Computers, IEEE Transactions on, 59(10):1337 –1349, oct. 2010.

[2] M.-L. Chiang, P. C. H. Lee, and R.-C. Chang. Using data clustering to
improve cleaning performance for flash memory. SoftwarePractice and
Experience, 29:267–290, 1999.

[3] A. Gupta, Y. Kim, and B. Urgaonkar. Dftl: a flash translation layer em-
ploying demand-based selective caching of page-level address mappings.
SIGPLAN Not., 44:229–240, March 2009.

[4] J.-W. Hsieh, L.-P. Chang, and T.-W. Kuo. Efficient on-line identification
of hot data for flash-memory management. In Proceedings of the 2005
ACM symposium on Applied computing, SAC ’05, pages 838–842, 2005.

[5] S. Im and D. Shin. Comboftl: Improving performance and lifespan of
mlc flash memory using slc flash buffer. Journal of Systems Architecture,
56(12):641 – 653, 2010.

[6] D. Jung, J.-U. Kang, H. Jo, J.-S. Kim, and J. Lee. Superblock ftl: A
superblock-based flash translation layer with a hybrid address translation
scheme. ACM Trans. Embed. Comput. Syst., 9:40:1–40:41, April 2010.

[7] A. Kawaguchi, S. Nishioka, and H. Motoda. A flash-memory based
file system. In Proceedings of the USENIX 1995 Technical Conference
Proceedings, TCON’95, pages 13–13, 1995.

[8] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, and H.-J. Song.
A log buffer-based flash translation layer using fully-associative sector
translation. ACM Trans. Embed. Comput. Syst., 6, July 2007.

[9] C. Park, W. Cheon, J. Kang, K. Roh, W. Cho, and J.-S. Kim. A
reconfigurable ftl (flash translation layer) architecture for nand flash-
based applications. ACM Trans. Embed. Comput. Syst., 7:38:1–38:23,
August 2008.

[10] Z. Qin, Y. Wang, D. Liu, and Z. Shao. A two-level caching mechanism
for demand-based page-level address mapping in nand flash memory
storage systems. In Proceedings of the 2011 17th IEEE Real-Time and
Embedded Technology and Applications Symposium, RTAS ’11, pages
157–166, 2011.

[11] Samsung Electronics Company. K9MDG08U5M 4G * 8 Bit MLC NAND
Flash Memory Data Sheet, 2008.


