
A Divide and Conquer based Distributed Run-time
Mapping Methodology for Many-Core platforms

Iraklis Anagnostopoulos, Alexandros Bartzas, Georgios Kathareios, Dimitrios Soudris

School of Electrical and Computer Engineering, National Technical University of Athens, Greece

Abstract—Real-time applications are raising the challenge of
unpredictability. This is an extremely difficult problem in the
context of modern, dynamic, multiprocessor platforms which,
while providing potentially high performance, make the task of
timing prediction extremely difficult. In this paper, we present
a flexible distributed run-time application mapping framework
for both homogeneous and heterogeneous multi-core platforms
that adapts to application’s needs and application’s execution
restrictions. The novel idea of this article is the application of
autonomic management paradigms in a decentralized manner
inspired by Divide-and-Conquer (D&C) method. We have tested
our approach in a Leon-based Network-on-Chip platform using
both synthetic and real application workload. Experimental
results showed that our mapping framework produces on average
21% and 10% better on-chip communication cost for homoge-
neous and heterogeneous platform respectively.

I. INTRODUCTION AND MOTIVATION

Future integrated systems will contain billion of transis-

tors [1], composing tens to hundreds of IP cores. Modern

embedded platforms take advantage of this manufacturing

technology advancement and are moving from Multi-Processor

Systems-on-Chip (MPSoC) towards Many-Core architectures

employing high numbers of processing cores. Intel has already

created platforms with 80 and 48 general purpose processing

cores [2], [3], [4], while Networks-on-Chip (NoC) are already

supported by the industry (such as the Æthereal NoC [5]

from NXP and the STNoC [6] from STMicroelectronics).

The industrial vision goes as far as thousand core chips [7].

The development of such many-core architectures is driven by

the development of highly parallel/multi-threaded demanding

applications. A big challenge in using such a complex system

is among others to efficiently map the various applications on

the many-core platform.

Resource management is a key technology for the successful

use of computing platforms. The run-time resource manage-

ment paradigm has become prominent recently because it can

deal with the run-time dynamics of applications and platforms.

Thus, the efficient run-time application mapping enables the

efficient usage of the platform resources, minimizing mapping

time, interconnection network communication load and energy

budget. Existing approaches to run-time mapping algorithms

on many-core platforms, even if they expose some autonomic

properties, are typically centralized [8]. Traditionally, a central

This work is partially supported by the E.C. funded FP7-248716 2PARMA
Project, www.2parma.eu

978-3-9810801-8-6/DATE12/ c©2012 EDAA

core periodically analyzes available information and computes

a global configuration for the whole platform. It pushes

this configuration out to the individual cores in a piecemeal

fashion; alternatively these cores pull their respective config-

urations from the central one. However, such a centralized

approach has several disadvantages. First, it creates a central

point of failure, which renders the whole system unusable

when the central core fails. Second, a central core limits

scalability, because it represents a bottleneck for processing

and communication functions, especially in environments that

require frequent configuration changes. In this paper, we

present a flexible distributed run-time mapping framework

based on the Divide-and-Conquer strategy.
Divide-and-Conquer (D&C, derived from Latin: divide et

impera) is a combination of political, military and economic

strategy. Its goal is to maintain control by breaking up larger

concentrations of power into smaller ones. These smaller

concentrations of power individually have less power than the

one implementing the strategy. Historically, it has been used

by great empires such as ancient Rome, by dividing the land

to smaller regions and setting local Kings.
In computer science, the D&C strategy consists in breaking

a problem into simpler subproblems of the same type, next to

solve these subproblems, finally to amalgamate the obtained

results into a solution to the problem. Thus, it is primarily

a recursive method for finding solutions to a big problem.

The algorithms of this type display two parts; the first one

breaks the problem into subproblems, the second one merges

the partial results into the final result.
In this paper, we adopt the concept of the D&C method

and use it so as to perform distributed run-time mapping on

both homogeneous and heterogeneous many-core platforms.

An abstract example of our approach implementing the D&C

concept is presented in Figure 1. When a new application

arrives, the “Emperor” task is triggered and it gets all the ap-

propriate applications’ information. Then, it chooses the most

suitable region, in terms of available cores, that application

can fit on and it sends a signal to a suitable core (making him

“Local King”) in that region to perform the run-time mapping.

The novel ideas of this paper are:

• We propose a flexible distributed method for run-time

mapping on both homogeneous and heterogeneous many-

core platforms

• The flexibility of our approach is based on the fact that

our run-time mapping framework can achieve different

“Emperor” Task
Choose which region

best serves applications

App 1 App 2 App 3

App 2

App 1

App 3

Triggers “local Kings”
to perform mapping to

their region

Fig. 1. Divide and Conquer on many-core platform.

levels of platform’s resources utilization depending on

application’s needs in comparison with other state-of-the-

art distributed algorithms [9].

• We employ a fast node swapping procedure at the final

step of the run-time mapping producing even better

results in terms of on-chip communication cost.

The rest of the paper is organized as follows. The related

work is presented in Section II. The adoption of the D&C

approach in the context of our work is presented in more detail

in Section III, where the proposed methodology framework

is presented. The evaluation of the proposed approach and

the simulation results are presented in Section IV and finally,

conclusions are drawn in Section V.

II. RELATED WORK

The authors of [10] present a mapping and scheduling strat-

egy for hard real-time embedded systems, which communicate

over a shared medium (i.e., bus) aiming at minimizing the

system modification cost. A run-time application mapping onto

homogeneous NoC platforms with multiple voltage levels is

presented in [11]. That technique consists of a region selection

algorithm and a heuristic for run-time application mapping.

Broersma et al. [12] propose the MinWeight algorithm for

solving the minimum weight processor assignment problem

but only for task graphs with maximum degree at most two.

Smit et al. in [13] extend the aforementioned algorithm by

solving the problem of run-time task assignment on hetero-

geneous processors with task graphs restricted to a small

number of vertices or a large number of vertices with degree of

Divide NoC to
regions based on

app’s size

Search for a
region and set a

regional
controller

Apply Run-time
mapping
algorithm

Wait for a task
to finish

Search for a region
that optimizes the
matching factor

and set a regional
controller

Apply Run-time
mapping
algorithm

Get application’s
needs in terms of

PEs

Report PE’s
type to regional

controller

Divide NoC to
logical regions

Consider NoC as
a unified region

New application
arrives

Not found Not found

Freed PE
matches app’s

needs Yes

No

System-wide
controller triggered

Homogeneous
platform

Heterogeneous
platform

Initialization Initialization

Regional
controller
triggered

Regional
controller
triggered

Fig. 2. Flow of our D&C methodology.

no more than two [12]. A unified single-objective algorithm,

called UMARS, couples path selection, mapping of cores and

TDMA time-slot allocation, such that the network required to

meet the constraints of the application is minimized [14].

Faruque et al. [9] present a runtime application mapping

in a distributed manner using agents targeting for adaptive

NoC-based heterogeneous multi-processor systems. Authors

claim that a centralized run-time resource management may

bear a series of problems such as single point of failure

and large volume of monitoring-traffic. However, Nollet et

al. [15] present a centralized runtime resource management

scheme that is able to efficiently manage a NoC containing

fine grain reconfigurable hardware tiles and two task migration

algorithms. The resource management heuristic consists of

a basic algorithm completed with reconfigurable add-ons.

The basic heuristic contains ideas from multiple resource

management approaches. A greedy non-iterative algorithm is

presented in [16]. Mapping is done based on core clustering

where communication is routed by static xy routing. In this

paper, we present a run-time distributed application mapping

for homogeneous and heterogeneous many-core platforms.

III. PROPOSED METHODOLOGY FRAMEWORK

The goal of the proposed methodology framework is to per-

form bandwidth-aware run-time mapping of application(s) de-

scribed by their application task graphs in many-core network-

on-chip architectures described by their application graphs.

An overview of our methodology framework is presented

in Figure 2. Once a new application arrives the system-wide

controller is invoked, the so called “Emperor” task is triggered,

and according to the kind of many-core platform, the Homo-

geneous (Section III-B) or the Heterogeneous (Section III-C)

flow is followed. The system-wide controller is a light-weight

task that performs the initial steps of the run-time mapping. It

is responsible for:

1) getting the application’s requirements,

2) selecting an appropriate region to map that application

on and

3) triggering other cores in the region (the regional con-

trollers, the so called “Local Kings” of Section I) so as

to perform the run-time mapping algorithm.

A. Definitions

An application task graph (ATG) is used to capture the

traffic flow characteristics. The ATG G(T,D) is a directed

acyclic graph, where each vertex ti represents a computational

module in the application. K[t] ∀ti ∈ T specifies task’s

class type (e.g. logic task, computational task, memory task

etc). Each directed arc di,j ∈ D between tasks ti and tj
characterizes data and communication dependencies. Each

di,j has an associated value b(di,j), which stands for the

communication volume exchanged between tasks ti and tj .

A many-core platform topology and its communication in-

frastructure can be uniquely described by a strongly connected

directed graph A(I,N). The set of vertices N is composed

of two mutually exclusive subsets NPE and NC containing

the available platform’s Processing Elements (PEs) and the

platform’s on-chip interconnection elements (such as routers in

Network-on-Chip technology). C[pei] ∀pei ∈ NPE specifies

the class of the PE pei. The set of edges I contains the

interconnection information (both physical and virtual) for the

N set.

The mapped cores define the MPE set. We also define a

mapping function map : T → NPE that maps the applica-

tion’s task (T set) to the available PEs (NPE set). Let the set

of unmapped nodes MPE such as pe ∈ MPE if pe /∈ MPE .

From our definition it follows that MPE ∩MPE = ∅.

We define the set R which describes the logical regions

on the platform. R is composed of k (k � 1) subsets

R1, R2, ..., Ri, ..., Rk such that
k⋂

i=1

Ri = ∅ and
k⋃

i=1

Ri = R.

MRi [] is a list that defines the one to one result of the map
mapping function in the Ri region. A region Ri is considered

occupied iff ∃pei ∈ Ri : pei ∈ MPE .

In an heterogeneous platform, the C[pei] varies for each PE.

Also, each ti may require a special class of PE to run on, e.g.

a DSP PE class. In order to comply with application’s require-

ments and platform’s resources and have the best T → NPE

correspondence, we define ∀ti ∈ T the parameter Matching

Factor (MF) such that:

1 ≥ C[pei]

K[ti]
≥ MFti , ∀pei ∈ NPE (1)

MF is a designer specified parameter and defines the classes

of PEs that the ti can sit on. MF implies how good the class

C[pei] of pei element matches the specific ti task and it defines

a priority type on which core the task should be mapped on

first. Different values and different decisions for MF result

to different MRi
[] lists. In a homogeneous platform MFt1 =

... = MFtN , ∀ti ∈ T because C[pe1] = ... = C[peN], ∀pe ∈
Npe.

Algorithm 1 Homogeneous platform

// Step 1: Check availability

1: If |T | � |MPE |
2: define new Ri ∈ R|∀pei ∈ Ri, pei ∈MPE

3: signal(Ri)
4: jump(Step 2)
5: Else
6: wait() // for a task to release its PE
7: jump(Step 1)

// Step 2: Run time mapping procedure
8: ∀di,j ∈ D
9: ∀pei ∈ Ri

10: src = min{FHOM (di, pei)} // equation 2
11: dst = min{FHOM (dj , pei)}
12: MPE ,MRi

[]← src
13: MPE ,MRi

[]← dst
// Step 3: Swapping procedure

14: bestCost = bwCost{MRi
[]} // equation 3

15: ∀ti ∈ Ri

16: ∀tj ∈ Ri, tj �= ti
17: If (MD(ti, tj) � MAX MANH DST)
18: swap(ti, tj)
19: tmpCost = bwCost{MRi

[]}
20: If tmpCost < bestCost
21: bestCost = tmpCost
22: MRi

[]⇐ new MRi
[]

23: Else
24: swap(ti, tj)

B. Homogeneous Platform
The starting point of the methodology is the annotated

graphs of the many-core platform A(I,N) and of the applica-

tion(s) G(T,D) to be mapped. The mapping algorithm utilizes

this information and proposes the solution without violating

the bandwidth constraints of the platform and the requirements

of the application(s). The mapping procedure is presented in

Alg. 1.

• Step 1 (lines 1-7): In the first step, we check the total

number of tasks |T |. If platform is capable for serving

the application a new region Ri is created and a signal

is sent to a core inside the Ri region. This core plays

the role of the regional controller (“Local King” as

described in Section I) and it performs the run-time

mapping algorithm. If this is not the case, we wait for

a task to finish and free its PE. Due to fact that the set

R is composed of mutually exclusive subsets, pei cannot

belong to other subsets of R.

• Step 2 (lines 8-13): For every communication flow (di,j)

in G, we find for the source (i) and the destination (j)

the min value of cost function 2 for the selected PEs.

FHOM =
∑

j

(b(di,j) +MDi,j) +
∑

i

∑

j

b(di,j)×MDi,j

(2)

where MDi,j is the distance (measured in hops) between

pei and pej . This cost function combines the communi-

cation cost of the neighborhood of pei (first term) and the

total communication cost of the platform (second term).

• Step 3 (lines 14-24): After the initial mapping has been

performed we employ an iterative application node swap-

ping process (similar to the one used in [17]) trying to

further reduce the total communication cost. During this

process a pair of application nodes (mapped on platform

nodes) is chosen and their position on the platform is

swapped. After each swap the total communication cost

(equation 3) is evaluated and if it is smaller than the

previous value the swap is kept, otherwise the swap is

not valid. The number of iterations of this swapping pro-

cedure is defined by the value MAX MANH DST .

bwCost =
∑

MRi
[]

b(di,j) ∗ (MDi,j) (3)

C. Heterogeneous Platform

The starting point of the methodology for heterogeneous

platforms is the annotated graphs of the many-core platform

A(I,N), of the application(s) G(T,D) to be mapped on

and the designer specified parameter MF . The algorithm

searches for regions able to serve application’s task as best

as possible in terms of available classes. The algorithm for

the heterogeneous platforms is presented in Alg. 2.

• Step 1 (lines 1-8): In the first step, we try to find a

region in which all cores’ classes match perfect with all

application’s tasks (
C[pei]
K[ti]

= 1). If such region exists,

a signal is sent to a core inside the region in order to

perform the distributed run-time mapping algorithm.

• Step 2 (lines 9-13): If the first matching does not yield

a result and application’s requirements are not so strict

(MF < 1) we change the binding according to MFti

and try to find regions that are as close as possible to the

required MFti ∀ti ∈ T . If such a region exists this region

is selected and the mapping algorithm is performed.

• Step 3 (lines 14-20): If still no matching region has been

found, we search for any unoccupied Ri and we add to

that Ri any pei ∈ MPE . If the new region R
′
i is not

able to serve the application, all PEs that were previously

attached, they are now restored to their previous regions.

• Step 4 (lines 21-28): If still no matching region has been

found or all regions are occupied, a new region Ri is

created and any pei ∈ MPE is added to that region. And

in this case if the new region Ri is not able to serve

the application, all PEs that were attached , they are now

restored to their previous regions and we wait for a task

to finish and free its PE.

• Step 5 (lines 29-37): In this step, we define the set S
that contains all the flows di,j whose either source’s

class (K[ti]) or destination’s class (K[tj]) is bound to

K[tk]. This set is then sorted by b(di,j). We sort flows by

bandwidth requirements as it helps in reducing bandwidth

fragmentation and it important from a resource conser-

vation perspective since the benefits of a shorter path

grows with communication demands. Then, for every

communication flow (di,j) in S, we find for the source (i)
and the destination (j) the min value of cost function 4

for the selected pei.

FHET = FHOM +Q(C[pei]) (4)

Algorithm 2 Heterogeneous platform

// Step 1: Region selection step
1: ∀ti ∈ T
2: ∀pei ∈ NPE

3: sort{MFti
}

4: ∀Ri ∈ R
5: If (|T | � |MPE |) && (∀ti ∈ T , ∃pei ∈MRi

:
C[pei]

K[ti]
= 1)

6: select(Ri)
7: jump(Step 5)
8:

// Step 2: if the first matching doesn’t yield a result
9: ∀Ri ∈ R

10: If (|T | � |MPE |) && (∀ti ∈ T , ∃pei ∈MRi
: 1 >

C[pei]

K[ti]
≥MFti

)

11: select(Ri)
12: jump(Step 5)
13:

// Step 3: no matching region has been found
14: ∀ unoccupied Ri ∈ R
15: ∀pei ∈MPE , pei /∈ Ri

16: {Ri} = {Ri}+ pei
17: repeat(Steps 1-2) for Ri

18: If Ri not selected
19: {Ri} = {Ri} − pei, restore(Ri)
20:

// Step 4: no region was found, or all regions are occupied
21: define new Ri = ∅ ∈ R
22: ∀pei ∈MPE

23: {Ri} = {Ri}+ pei
24: repeat(Steps 1-2) for Ri

25: If Ri not selected
26: {Ri} = {Ri} − pei, restore(Ri)
27: wait() // for a task to release its PE
28: jump(Step 1)

// Step 5: Run time mapping procedure
29: ∀K[tk] ∈ G
30: {S} = di,j iff (K[tk] = K[ti])||(K[tk] = T [tj])
31: sort(S) //by b(di,j)
32: ∀di,j ∈ S
33: ∀pei ∈ Ri

34: src = min{FHET (di, pei)} // equation 4
35: dst = min{FHET (dj , pei)}
36: MPE ,MRi

[]← src
37: MPE ,MRi

[]← dst
// Step 6: Swapping procedure

38: bestCost = bwCost{MRi
[]} // equation 3

39: ∀ti ∈ Ri

40: ∀tj ∈ Ri, tj �= ti
41: If (MD(ti, tj) � MAX MANH DST)
42: swap(ti, tj)
43: tmpCost = bwCost{MRi

[]}
44: If tmpCost < bestCost
45: bestCost = tmpCost
46: MRi

[]⇐ new MRi
[]

47: Else
48: swap(ti, tj)

where Q(C[pei]) is the requirements of class C[pei]
in terms of execution utilization and defines the PE’s

utilization by the task to be mapped on.

• Step 6 (lines 38-48): After the initial mapping has been

performed we try to further reduce the total communi-

cation cost by employing the swapping technique. We

swap a pair of mapped nodes and after each swap the

total communication cost (equation 3) is evaluated. If it

is better that the current communication cost the swap

remains, otherwise, we restore it back.

IV. EXPERIMENTAL RESULTS

We have performed extensive simulations of the behavior of

several applications (a) MPEG-4, (b) Multi-Window Display

(MWD) [18], (b) Picture-In-Picture (PIP) [18] (d) MultiMedia

System (MMS) [19], (e) Digitale Radio Mondiale (DRM) [20]

NoC size
6x6 8x8 10x10 12x12 14x14 16x16 18x18 20x20

C
om

m
un

ic
at

io
n

C
os

t

1000

10000

100000

1000000

D&C (Our scheme)
ADAM [9]
Design-time mapping [19]

Fig. 3. Communication Cost comparison in homogeneous platforms.

and (f) applications from TGFF [21] to validate our approach.

An architecture that is able to accommodate a high number of

cores, satisfying the need for high on-chip communication and

data transfers, is the Network-on-Chip (NoC) architecture. The

Network-on-Chip (NoC) model is emerging as a revolutionary

architecture in solving the performance limitations arising out

of long interconnects, outperforming more mainstream bus

architectures and as a very good architecture template for

many-core platforms.

In Figures 3 and 4 we compare for various homoge-

neous platforms, using TGFF application graphs, our D&C

approach to the state-of-the-art distributed run-time mapping

algorithm [9] and to an exhaustive design-time mapping [19],

in terms of on-chip communication cost. The on-chip com-

munication cost is a part of the mapping cost function for

all these three mapping algorithms. Figure 3 shows that our

D&C method achieves on average 21% better result in terms

of final on-chip communication cost compared to the run-

time algorithm presented in [9]. Although the optimal result

is achieved by the exhaustive design-time mapping algorithm,

our D&C method requires significant less cycles (improved

scalability) in order to make the mapping decisions, as shown

in Figure 4.

For the validation of our approach on heterogeneous plat-

forms we used the platform presented in [22]. The platform is

composed of Processor-Memory (PM) nodes interconnected

via a packet-switched mesh network. A node can also be a

memory node without a processor, pure logic or an interface

node to off-chip memory. Each PM node contains a LEON3

processor, hardware modules connected to the local bus, and a

local memory. The system uses a virtual-to-physical translation

and all shared memories are globally visible to all nodes and

organized as a single virtual addressing space. The commu-

nication of cores inside the platform is done using message-

passing instructions and by using the shared memory interface.

Whenever there is a need for the system-wide controller to

trigger another core, the hardware’s synchronization safe-lock

memory mechanism is used. Shared memory environment

NoC size
6x6 8x8 10x10 12x12 14x14 16x16 18x18 20x20

C
yc

le
s

1e+7

1e+8

1e+9

1e+10

1e+11

1e+12

1e+13

1e+14

1e+15

1e+16

D&C (Our scheme)
ADAM [9]

Design -time mapping [19]

Fig. 4. Mapping computational effort in homogeneous platforms.

Applications
MMS MPEG4 MWD PIP DRM

C
om

m
un

ic
at

io
n

C
os

t

100

1000

10000

100000

1000000

10000000

D&C (Our scheme)
ADAM [9]
Design-time mapping [19]

Fig. 5. Communication cost comparison for the five selected applications.

allows the ease use of such mechanisms. The lock is acquired

by the system-wide controller and it propagates information

to shared memory. Then the lock is freed and the region

controller loads the data from the memory and performs the

required mapping operations. The execution of code on a

regional controller is also possible with the usage of message

passing instructions.

Figure 5 presents a comparison of the on-chip communica-

tion cost for the five selected applications. We compare the

on-chip communication cost of our D&C approach ADAM

and with the exhaustive design-time mapping algorithm [19].

As Figure 5 depicts, our proposed algorithm has on average

10% better result in terms of on-chip communication that

the ADAM run-time mapping algorithm. However, the best

result is achieved, as expected, by the exhaustive design-

time mapping algorithm. The cycles required for the result

extraction are the same for both the run-time algorithms but

for the exhaustive one is 100× bigger.

Several run-time scenarios were built on the NoC platform.

The difference between the different scenarios is the number

Cycles
0 500 1000 1500 2000

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Scenario 5

Scenario 6

D&C (MF = 0)
ADAM [9]

D&C (MF = 0.5)
D&C (MF = 1)
Application

arrives
Application
is mapped

Fig. 6. Run-time mapping scenarios on an heterogeneous many-core
platform.

TABLE I
UTILIZATION OF PLATFORM’S RESOURCES

D&C D&C D&C
ADAM [9]

(MF = 1) (MF = 0.5) (MF = 0)
Scenario 1 100% 92% 92% 91%
Scenario 2 100% 88% 88% 87%
Scenario 3 100% 87% 87% 88%
Scenario 4 100% 86% 86% 84%
Scenario 5 100% 78% 78% 79%
Scenario 6 100% 87% 87% 88%

of applications and the arrival time of each one of them.

The arrival time was randomly generated. We compared our

D&C scheme, using different matching factor values, with

the ADAM [9] one. Figure 6 depicts all the implemented

scenarios. The green diamond represents the arrival time of

the application while the red one represents the time that the

mapping result was taken. Three MF values are chosen to

match what is provided by the many-core platform [22], [23].

The picture shows that both our D&C scheme (with MF = 0
and MF = 0.5) has the same run-time behavior with the

ADAM approach. D&C scheme with MF = 1 has a different

behavior because under the MF = 1 restriction a task can be

mapped only on a core that has the same class type with the

task. In this case, the algorithm takes more time because it

waits for desired cores to be freed after finishing their tasks.

D&C scheme with MF = 1 has the best task to core mapping

decision resulting to best platform’s resources utilization as

depicted in Table I. Table I shows that with MF = 1, we can

have 100% utilization of platform resources at run-time with

a penalty cost at performance. If our application needs are not

so strict we can choose other values of matching factor, thus

relaxing the strictness of the matching.

V. CONCLUSION

In this paper we presented a D&C based distributed run-time

application mapping framework for both homogeneous and

heterogeneous many-core platforms. Our framework adapts to

application’s needs and application’s execution restrictions by

using the matching factor parameter. Our mapping framework

produces on average 21% and 10% better on-chip commu-

nication cost for homogeneous and heterogeneous platforms

respectively, compared to the ADAM [9] scheme with almost

the same computational effort. The random implemented run-

time scenarios showed that our algorithm can have differ-

ent behavior according to the selected matching factor and

resulting to different platform’s resources utilization. Future

extensions will include multi-objective mapping cost functions

and multi-layered run-time controller.

REFERENCES

[1] Semiconductor Industry Association, “International technology roadmap
for semiconductors,” 2006. [Online]. Available: http://www.itrs.net/
Links/2006Update/2006UpdateFinal.htm

[2] J. Howard et al., “A 48-core ia-32 message-passing processor with dvfs
in 45nm cmos,” in Proc. of ISSCC, feb. 2010, pp. 108 –109.

[3] L. Seiler et al., “Larrabee: a many-core x86 architecture for visual
computing,” ACM Trans. Graph., vol. 27, pp. 18:1–18:15, August 2008.

[4] S. Vangal et al., “An 80-Tile 1.28 TFLOPS Network-on-Chip in 65nm
CMOS,” in Proc. of ISSCC. IEEE, 2007, pp. 98–589.

[5] K. Goossens et al., “Æhereal network on chip: Concepts, architectures,
and implementations,” IEEE Des. Test, vol. 22, no. 5, pp. 414–421, 2005.

[6] STMicroelectronics, “STNoC: Building a new system-on-chip
paradigm,” White Paper, 2005.

[7] S. Borkar, “Thousand core chips: a technology perspective,” in Proc. of
DAC. ACM, 2007, pp. 746–749.

[8] E. Carvalho et al., “Heuristics for dynamic task mapping in noc-based
heterogeneous mpsocs,” in Proc. of IWRSP. IEEE Computer Society,
2007, pp. 34–40.

[9] M. A. Al Faruque et al., “Adam: run-time agent-based distributed
application mapping for on-chip communication,” in Proc. of DAC.
ACM, 2008, pp. 760–765.

[10] P. Pop et al., “An approach to incremental design of distributed embed-
ded systems,” in Proc. of DAC. ACM, 2001, pp. 450–455.

[11] C.-L. Chou and R. Marculescu, “Incremental run-time application map-
ping for homogeneous nocs with multiple voltage levels,” in Proc. of
CODES+ISSS. ACM, 2007, pp. 161–166.

[12] H. Broersma et al., “The computational complexity of the minimum
weight processor assignment problem.” in Proc. of WG, 2004, pp. 189–
200.

[13] L. T. Smit et al., “Run-time assignment of tasks to multiple hetero-
geneous processors,” in Progress 2004 Embedded Systems Symp., the,
2004, pp. 185–192.

[14] A. Hansson et al., “A unified approach to constrained mapping and
routing on network-on-chip architectures,” in Proc. of CODES+ISSS.
ACM, 2005, pp. 75–80.

[15] V. Nollet et al., “Centralized run-time resource management in a
network-on-chip containing reconfigurable hardware tiles,” in Proc. of
DATE. IEEE Computer Society, 2005, pp. 234–239.

[16] K. Goossens et al., “A design flow for application-specific networks
on chip with guaranteed performance to accelerate soc design and
verification,” in Proc. of DATE, 2005, pp. 1182–1187.

[17] S. Murali and G. D. Micheli, “Bandwidth-constrained mapping of cores
onto NoC architectures,” in Proc. of DATE. IEEE Computer Society,
2004, p. 20896.

[18] D. Bertozzi et al., “NoC synthesis flow for customized domain specific
multiprocessor systems-on-chip,” IEEE TPDS, vol. 16, no. 2, pp. 113–
129, Feb 2005.

[19] J. Hu and R. Marculescu, “Energy- and performance-aware mapping
for regular noc architectures,” IEEE TCAD, vol. 24, no. 4, pp. 551–562,
2005.

[20] L. T. Smit et al., “Run-time mapping of applications to a heterogeneous
soc,” in Proc. of SoC, 2005.

[21] R. P. Dick et al., “Tgff: task graphs for free.” in CODES’98, 1998, pp.
97–101.

[22] I. Anagnostopoulos et al., “Custom microcoded dynamic memory
management for distributed on-chip memory organizations,” Embedded
Systems Letters, IEEE, vol. 3, no. 2, pp. 66 –69, june 2011.

[23] X. Chen et al., “Supporting distributed shared memory on multi-core
network-on-chips using a dual microcoded controller,” in Proc. of DATE,
2010, pp. 39–44.

