
Fast and Lightweight Support for Nested Parallelism
on Cluster-Based Embedded Many-Cores

Andrea Marongiu, Paolo Burgio, Luca Benini
DEIS – University of Bologna

Viale Risorgimento 2, 40136 Bologna – Italy
Email: {a.marongiu, paolo.burgio, luca.benini}@unibo.it

Abstract—Several recent many-core accelerators have been
architected as fabrics of tightly-coupled shared memory clusters.
A hierarchical interconnection system is used – with a crossbar-
like medium inside each cluster and a network-on-chip (NoC)
at the global level – which make memory operations non-
uniform (NUMA). Nested parallelism represents a powerful
programming abstraction for these architectures, where a first
level of parallelism can be used to distribute coarse-grained
tasks to clusters, and additional levels of fine-grained parallelism
can be distributed to processors within a cluster. This paper
presents a lightweight and highly optimized support for nested
parallelism on cluster-based embedded many-cores. We assess
the costs to enable multi-level parallelization and demonstrate
that our techniques allow to extract high degrees of parallelism.

I. INTRODUCTION

Recently, several many-core architectures have been pro-
posed that leverage tightly-coupled clusters as a building
block. Examples include the HyperCore Architecture Line
(HAL) processors from Plurality [12], ST Microelectronics
Platform 2012 [11], or even GPGPUs like NVIDIA Fermi
[13]. In these architectures each cluster is composed of a
small-medium number (typically up to 16) of cores, inter-
connected through a high-bandwidth, low-latency communi-
cation and memory system. Inter-cluster communication is
achieved through a scalable interconnection medium, such
as a NoC. These systems often leverage a shared memory
model, where each cluster can access local or remote (i.e.,
belonging to another cluster) L1 storage, as well as L2 or
L3 memories. However, due to the hierarchical nature of the
interconnection system, memory operations are subject to non-
uniform accesses (NUMA), depending on the physical path
that corresponding transactions traverse.

Similar to traditional NUMA systems, nested (or multi-
level) parallelism represents a powerful programming ab-
straction for these architectures. Exploiting a single level
of parallelism means that there is a single thread (master)
that produces work for other processors (slaves). Additional
parallelism possibly encountered within the unique parallel
region is ignored by the execution environment. When the
number of processors in the system is very large, this approach
may incur low performance returns, since there may be not
enough coarse-grained parallelism in an application to keep
all the processors busy. Nested parallelism is used to increase
the efficiency of parallel applications in large systems, and
implies the generation of work from different simultaneously
executing threads. Opportunities for parallel work creation
from within a running parallel region result in the generation
of additional work for all or a restricted set of processors,
thus enabling better resource exploitation. In our cluster-based

architecture nested parallelism is extremely beneficial, where
a first level of parallelism can be used to distribute coarse-
grained tasks to clusters, and one or more inner levels of
fine-grained (e.g., loop-level) parallelism can be distributed
to processors within a cluster.

Nested parallelism can be implemented by using a mix
of programming models. For example, a message passing
layer such as MPI could be used to express outer levels of
parallelism among clusters, and data parallelism à la OpenMP
could be used to distribute inner levels within a cluster.
However, the use of two different programming models makes
application development cumbersome, as the programmer is
required to manually create threads and orchestrate their com-
munication and synchronization using different paradigms.
Moreover, this approach makes it difficult, if not impossible,
the application of global policies (for instance, to perform load
balancing or improve data locality) that cross the boundary
of each layer. A more appealing solution is one where the
programmer is allowed to create nested parallel regions from
within a unique programming model, such as OpenMP. In this
paper we will consider this approach.

Supporting nested parallelism on a resource-constrained
system such as our clusters is a challenging task. Relying on
solutions where new threads are created on the fly whenever
more parallelism is needed is not feasible, since this approach
would shortly run out of memory, and would impose too large
time overheads to enable fine-grained parallelism. In this paper
we present a lightweight and highly optimized data structure
and support for nested parallelism on cluster-based embedded
many-cores. We provide a detailed analysis of the necessary
costs to create additional parallelism at an arbitrary nesting
level, and demonstrate that our techniques allow to extract
high degrees of parallelism on real applications.

The rest of the paper is organized as follows. In Section
II we discuss previous work on nested parallelism. The target
architectural template is presented in Section III. Our opti-
mized implementation of the support for nested parallelism
is described in Section IV. We provide the results of our
experiments in Section V, and summarize conclusive remarks
and future research directions in Section VI.

II. RELATED WORK

Nested parallelism can be implemented in different ways
[1] [2] [3] [4] [5]. In literature many techniques exist, which
can be categorized into two main approaches:
Dynamic thread creation (DTC): Whenever the application
asks for additional parallelism, it is mapped on a lightweight
thread from some standard package (e.g., pthreads). This ap-
proach allows very flexible creation of parallelism as needed,978-3-9810801-8-6/DATE12/ c© 2012 EDAA

SHARED L1 TCDM (512 KB)

B
A

N
K

 0

SLAVE
PORT

LOGARITHMIC INTERCONNECT (MoT)

B
A

N
K

 1

SLAVE
PORT

B
A

N
K

 N

SLAVE
PORT

te
s
t-a

n
d

-s
e

t

se
m

a
p

h
o

re
s

SLAVE
PORT

L2/L3
BRIDGE

CORE 0

MAST
PORT

I$

CORE M

MAST
PORT

I$

TCDM SIZE

Fig. 1. On-chip shared memory cluster template

SWITCH SWITCH

SWITCHSWITCH

MEM
CTRL

MAIN MEMORY

TCDM 2

TCDM 1
TCDM 0

MAIN
MEMORY

0x00000

0x40000

0x80000

0xc0000

Fig. 2. Multi-cluster architecture and global address space

P3P2P1P0
M

7

M
6

M
5

M
4

M
3

M
2

M
1

M
0

lev 1

lev 2

lev 3

lev 1

lev 2

R
o

u
tin

g
 tre

e
A

rb
tre

e

Cores

Mem
banks

Fig. 3. Mesh of trees 4x8

but has a major drawback: thread creation is expensive both
in terms of space (memory footprint) and time [10], [16]. In
a resource-constrained platform such as ours this approach
would quickly run out of memory, and the resulting time
overheads would disallow fine-grained parallelism.
Fixed thread pool (FTP): A fixed number of lightweight
threads (typically as many as the number of processors) is
created at system startup and constitute a fixed pool of idle
workers. When a program requests the creation of parallelism,
physical threads are fetched from the pool. If the number of
logical threads created at an outermost parallel construct is
less than the number of threads in the pool, some of them
will be left unutilized and available for nested parallelism.

There also are many hybrid approaches, which combine
in some ways DTC and FTP. Some techniques start with a
FTP approach, and dynamically create new threads when there
are no idle workers on the pool [6]. Other solutions leverage
thread creation at the outermost level of parallelism – where
the computation is assumed to be coarse enough to amortize
the overhead – and a simple work descriptor shared by threads
at the innermost level of parallelism [1] [7]. The work in
[5] relies on a fixed thread pool, but allows multiple logical
threads to be mapped on a single physical thread and maintais
a work queue from which threads which become idle can fetch
(or steal) work. The latter approach is based on the widely
adopted abstraction of a work queue [8] [9], and is in fact an
orthogonal technique to nesting. OpenMP itself, since its latest
specification [17], provide tasks or dynamic loop scheduling,
also based on the notion of a work queue, which allow to
specify work units at a finer granularity than threads. In these
programming models, once a thread team has been defined, to
extract more parallelism it is not necessary to create additional
threads: the more lightweight abstraction of the work queue
allows existing threads to push and fetch work from there. This
offers in many situations a more flexible means to creating
parallelism than that offered by nesting alone. However, while
work queues allow very flexible parallelism creation, they do
not support the logical clustering of threads in the multilevel
structure, which is key to achieving data locality and balancing
of static workload partitioning. When considering the cluster-
based design of our target architecture, the capability of
confining the enclosure of a thread team within the boundaries
of a cluster is key to achieve locality and balancing. We
thus believe that a lightweight support for the creation of
nested thread teams is fundamental to enabling fine-grained
parallelism. In the following we describe our streamlined
and optimized implementation of nested parallelism at the
cluster level. Work queue-based parallelism can orthogonally
be provided within our support.

III. ARCHITECTURAL TEMPLATE

The architectural template that we consider in this work is a
many-core programmable accelerator which leverages tightly-
coupled clusters as a building block. A simplified block dia-
gram of the target cluster is shown in Fig. 1. In this template,
scaling to large system sizes is enabled by replicating clusters
and interconnecting them with a scalable medium like a NoC
(See Fig. 2). In this work we focus on the cluster subsystem,
and describe an optimized implementation of the support for
nested parallelism for this hardware. A cluster consists of a
configurable number (up to 16) of processors with private
instruction caches. Processors are interconnected through a
low-latency, high bandwidth logarithmic interconnect similar
to the one proposed by Plurality [12] or [14], and communicate
through a fast multi-banked, multi-ported tightly-coupled data
memory (TCDM). The number of memory ports in the TCDM
is equal to the number of banks to allow concurrent accesses to
different banks. Conflict-free TCDM accesses have two-cycles
latency. The logarithmic interconnect is built as a parametric,
fully combinational mesh-of-trees (MoT) interconnection net-
work (see Fig. 3). Data routing is based on address decoding:
a first-stage checks if the requested address falls within the
TCDM address range or has to be directed off-cluster. The
interconnect provides fine-grained address interleaving on the
memory banks to reduce banking conflicts in case of multiple
accesses to logically contiguous data structures. The crossing
latency is one clock cycle. If no bank conflicts arise, data
routing is done in parallel for each core. In case of conflicting
requests, a round-robin based scheduler coordinates accesses
to memory banks in a fair manner. Banking conflicts result
in higher latency, depending on the number of conflicting
requests. Multiple concurrent reads on a same address are
satisfied through read broadcast, which completes in one cycle.

Processors can synchronize by means of standard read/write
operations at a memory bank providing test-and-set semantics
(hardware semaphores). Addresses belonging to L2/L3 mem-
ories are also mapped in the global address space (see Fig.
2), but corresponding transactions are transported off-cluster
through a memory controller.

IV. LIGHTWEIGHT SUPPORT FOR NESTED PARALLELISM

As discussed in the previous section, the FTP approach
is the one which provides the simplest requirements for
supporting nested parallelism, thus it represents the natural
choice for our architecture. At boot time we create as many
threads as processor, providing them with a private stack and a
unique ID (matching the hosting processor ID). We call these
threads persistent, because they will never be destroyed, but
will rather be re-assigned to parallel teams as needed. Here

C

E

D

F
A B

TEAM 0

TEAM 1 TEAM 2

t1

t2

Parallel

Loop

!
m

e

t0

E F

t3

Fig. 4. Application with nested parallelism

1 0 0 0 00 0 0

TEAM 0

t0

1 1 1 1 00 0 0t1

1 1 1 1 11 1 1t2

TEAM 1

TEAM 2

Global Master

(always ac!ve)1

Free threads0
0 1 2 3

0 1 2 3 4 5 6 7 Persistent THREAD ID

0 1
0 1 2

0 1 2

Team-local THREAD ID

Team-local THREAD ID

0 1 2 3 4 5 6 7 Persistent THREAD ID

0 1 2 3 4 5 6 7 Persistent THREAD ID

1 0 0 0 00 0 0t3

0 1 2 3 4 5 6 7 Persistent THREAD ID

Fig. 5. Global pool descriptor

Team

Desc 0

Team

Desc 1
Team

Desc 2

Dummy

Team

Desc

PARENT

0x430 0x4300x430 0x460 0x460 0x4600x400 0x400

PARENT

0 1 2 3 4 5 6 7

PARENT

TEAM 0

TEAM 1

TEAM 2

TEAM DESC PTR

0x400

0x430

0x460

Fig. 6. Tree of team descriptors to track nesting

it is important to point out that persistent threads are non-
preemptive. We promote the thread with the lowest ID as
the global master thread. This thread will be running all the
time, and will thus be in charge of generating the topmost
level of parallelism. The rest of the threads are docked on
the global pool, waiting for a master thread to provide them
with work. At startup, all the persistent threads other than the
global master (hereafter called the global slaves) execute a
microkernel code where they first notify their availability on a
private location of a global array (Notify-Flags, or NFLAGS),
then they wait for work to do on a private flag of another
global array (Release-Flags, or RFLAGS). The status of global
slaves on the thread pool (idle/busy) is annotated in a third
global array, the global pool descriptor. When a master thread
encounters a request for parallelism creation, it fetches threads
from the pool and points them to a work descriptor. A detailed
description of the various data structures is provided in the
following.

A. Forking threads

The first piece of information required by a master to
create a parallel team is the status of the global slaves in
the pool. As explained, this information in stored in the
global pool descriptor array. Since several threads may want
to concurrently create a new team, accesses to this structure
must be locked. Let us consider the example shown in Fig.
4. Here we show the task graph of an application which uses
nested parallelism. At instant t0 only the global master thread
is active, as mirrored by the pool descriptor depicted in Figure
5. Then parallel TEAM 0 is created, where tasks A, B, C and
D are assigned to threads 0 to 3. The global pool descriptor is
updated accordingly (instant t1). After completing execution
of tasks C and D, threads 2 and 3 are assigned tasks E and
F, which contain parallel loops. Thus threads 2 and 3 become
masters of TEAM 1 and TEAM 2. Threads are assigned to
the new teams as shown in Fig. 5 at instant t2. Note that the
number of slaves actually assigned to a team may be less than
what requested by the user, depending on their availability.
Besides fetching threads from the global pool, creating a new
parallel team involves the creation of a team descriptor (see
Fig. 7), which holds information about the work to be executed
by the participating threads. This descriptor contains two main
blocks:
a) Thread Information: A pointer to the code of the parallel
function, and its arguments.
b) Team Information: when participating in a team, each thread
is assigned a team-local ID. The ID space associated to a team
as seen by an application is expressed in the range 0,..,N-
1, with N being the number of threads composing the team.

To quickly remap local thread IDs into the original persistent
thread IDs and vice versa, our data structure maintains two
arrays. The LCL THR IDS array is indexed with persistent
thread IDs and holds corresponding local thread IDs. The
PST THR IDS is used for services that involve the whole
team (e.g., joining threads, updating the status of the pool
descriptor), and keeps the dual information: it is indexed with
local thread IDs and returns a persistent thread ID. Moreover,
to account for region nesting each descriptor holds a pointer to
the parent region descriptor. This enables fast context switch
at region end.

0 0

Master Slaves

1 0 00 1 1
Team

mask

x x 1 x xx - 1NFLAGS

GLOBAL SLAVE

No!fy

Availability

(1=available)

Wait for

new work

GLOBAL MASTER

Gather

Workers

Release

workers

Significant

flags

x x 0 x xx - 0RFLAGS

Writes

Reads

Team

Desc

Fill work

descriptor

Read descriptor

Busy wai!ng

void ** fn

void * data

BITMASK team_mask

int LCL_THR_IDS[]

int PST_THR_IDS[]

TEAM_INFO * parent

THREAD INFO

TEAM INFO

Team descriptor

Fig. 7. Thread docking, synchronization and team descriptor

This team descriptor has a memory footprint of only 48
Bytes. Once the team master has filled all its fields, the
descriptor it is made visible to team slaves, by storing its
address in a global TEAM DESC PTR array (one location per
thread). Fig. 6 shows a snapshot of the TEAM DESC PTR
array and the tree of team descriptors at instant t2 from our
previous example.

B. Joining Threads

Joining threads at the end of parallel work typically involves
global (barrier) synchronization. Supporting nested parallelism
implies the ability of independently synchronizing different
thread teams (i.e., processor groups). To this aim we can
leverage the mechanism described previously to dock threads,
which behaves as a standard Master-Slave barrier algorithm,
extended to selectively synchronize only the threads belonging
to a particular team. The MS barrier is a two-step algorithm.
In the Gather phase, the master waits for each slave to notify
its arrival on the barrier on a private status flag (our NFLAGS
array). After arrival notification, slaves check for barrier ter-
mination on a separate private location (our RFLAGS array).
The termination signal is sent by the master in these private

locations during the Release phase of the barrier. Fig. 7 shows
how threads belonging to TEAM 1 (instant t2 of our example)
synchronize through these data structures.

V. EXPERIMENTAL RESULTS

In this section we validate our nested parallelism support
design. The architectural details of our target platform are
summarized in Table I.

TABLE I
ARCHITECTURAL PARAMETERS

ARM v6 cores (up to) 16 TCDM banks 16
I$i size 1 KB TCDM size 512 KB
I$i line 4 words L3 latency 50 cycles
thit = 1 cycle L3 size 256 MB

As a first exploration, we characterize the cost for open-
ing and closing parallel teams, providing a breakdown of
the various sources of overhead. We compare two different
implementations of thread docking, namely one which busy-
waits for available work to do, and one that puts cores to
sleep when idling (idle/wake in the plots). For the busy-wait
implementation we allocate polling flags for global slaves on
different banks of the TCDM to reduce the conflicts. Fig.
8 and Fig. 9 show the cost in (hundred) clock cycles for
opening and closing a team, respectively, at the outermost level
of parallelism. In this experiment the master thread requests
the maximum number of available threads, and we consider
increasing sizes for the thread pool. The breakdown plot shows
the cost for each of the three main steps taken upon creation
of a new team:
1) Allocate and populate the team descriptor.
2) Fetch the slave threads from the global thread pool.
3) Release the slaves from global synchronization structures.
The first component does not depend on the number of threads
requested. However, the busy-waiting implementation is sub-
ject to the effect of memory bank conflicts. The fact that it is
almost insensitive to the polling activity of the slave threads
idling on the pool confirms the importance of distributing poll
flags on separate memory banks, which eventually make its
performance very close to the sleep/wake implementation. On
the contrary, the time spent for fetching and releasing slave
threads is dependent on their number, since these operations
take place from within a loop iterating for as many times as
the number of requested slaves.

Overall, it is possible to see that opening a new team
composed of 16 threads takes ≈ 690 cycles for the busy-
wait implementation, and ≈ 600 cycles for the sleep/wake
implementation. The breakdown for the team closing shows
two components: the time to collect the team threads on the
synchronization structure, and the time to tear down the team
descriptor and restore the execution context of the parent
team by updating global data structures. Collecting threads
on the dock is done iterating over the team participants, so
the execution time of this section increases with the number
of threads in the team. Updating data structures with the
information about the parent team context, on the contrary,
is independent of the number of threads. It is important to
recall here that opening and closing a team implies the use
of critical sections to protect updates to global data structures.
As such, if more than one attempt to create/destroy a new
team at the same time takes place the execution of (parts) of
the procedure gets serialized on the concurrent calling threads,
which we study next.

0

1

2

3

4

5

6

7

8

1 2 4 8 16 1 2 4 8 16

BUSY-WAIT SLEEP/WAKE

[C
y
c
le

s
 ×

1
0

0
]

Persistent
Threads

Team creation

Other Release threads Fetch threads Team Desc Crea!on

Fig. 8. Cost of creating a new team

0

0.5

1

1.5

2

2.5

3

1 2 4 8 16 1 2 4 8 16

BUSY-WAIT SLEEP/WAKE

[C
y
c
le

s
 ×

1
0

0
]

Persistent
Threads

Team closing

Other Release Team Gather Slaves

Fig. 9. Cost of closing a team

Besides characterizing the cost of our basic constructs to
create and destroy parallel teams, we study the effect of
nested parallelism creation from within OpenMP. The library
functions invoked by the compiler when a #pragma omp

parallel construct is encountered have been rewritten as
a wrapper around our primitives for parallelism creation. A
programming model such as OpenMP exposes a simple and
intuitive interface for nested parallelism, however it introduces
additional function call overhead to interact with the runtime
environment. To measure the OpenMP runtime overhead we
use the EEPC microbenchmarks [15], and extend the method-
ology to account for nested parallel regions as described in
[16]. This methodology basically computes runtime overheads
by subtracting the execution time of the parallel microbench-
mark from the execution time of its reference sequential
implementation. The parallel benchmark is constructed in such
a way that it would have the same duration of the reference
in absence of overheads.

In Fig. 10 we show the task graph representation of the
microbenchmarks used to assess the cost of nested parallelism
with depth 1, 2 and 4 respectively. The computational kernel
(indicated as W in the plots) is composed uniquely of ALU
instructions, to prevent memory effects from altering the
measure. We consider a simple pattern where a parallel region
is opened, then the block W is executed. This pattern is nested
up to 4 times. The thick gray lines in our plots represent the
sources of overhead that we intend to measure.

The difference between the parallel and sequential versions
of the microbenchmark represents the total overhead for open-
ing and closing as many parallel regions as the nesting depth
indicates. We thus divide the gross overhead by the nesting
depth to have an average cost for parallel region opening and
close. Figure 11 shows this cost for varying granularities of

WW WW

get_cycle()

get_cycle()

WW WWWW WW

PAR

WW WW

get_cycle()

SEQ

W = workload

W

get_cycle()

= overhead

WW WW

W

get_cycle()

get_cycle()

WW

W

WWWW

W

WW

PAR

WW WW

W
get_cycle()

SEQ

W = workload

W

= overhead

W

WW

W

WW

W

W

WW

W

WW

W

W

get_cycle()

get_cycle()

WW

W

WW

W

W

WW

W

WW

W

W

W W

SEQ

W = workload
= overhead

PAR

W

W

get_cycle()

W

W

A

B C

get_cycle()

get_cycle()

Fig. 10. Microbenchmark for nested parallelism overhead. A) 1 level, B) 2 levels, C) 4 levels

0

0.5

1

1.5

2

2.5

-2 0 2 4 6 8 10 12

[C
y

c
le

s
1

0
0

0
]

Workload granularity

[Cycles × 1000]

Avg nes!ng cost
(per team)

depth 4 depth 2 depth 1

×

Fig. 11. Cost for different level of parallelism

the work unit (W). The first two things to notice are that i) the
cost for single-level parallelism creation from OpenMP is, as
expected, slightly higher than the sum of the costs for opening
and closing a team that we described earlier, but not much so
(roughly 15%), and ii) inner parallelism is slightly costlier to
create than the outermost level. The latter is a consequence
of the fact that when two or more threads try to concurrently
open a new team, the execution of the opening sequence gets
serialized due lock-protected updates to global data structures.
For this reason, when W contains very small amounts of work
this effect is dominant, and the cost for parallelism creation
increases with the depth of nesting.

A. Strassen matrix multiplication

In this section we evaluate the effectiveness of our nesting
support on a real application kernel, and compare it against
other techniques to extract multi-level parallelism. As outlined
in Section IV, one efficient abstraction that can be orthogonally
applied to nesting is the work queue. OpenMP supports this
type of parallelism through dynamic loops (or, in the latest
specification, tasks). We refer to this kind of parallelism as
tasking in the following, and compare it against nesting.

The target application for our experiment is the Strassen
algorithm for matrix multiplication. It is a good candidate
for our exploration, since it naturally exposes high degrees of
parallelism, both at the task- and data-level, thus being easily
parallelized with both the proposed approaches. The algorithm
is shown in the leftmost part of Figure 12.

C11 = P1 + P4 – P5 + P7

C12 = P3 + P5

C21 = P2 + P4

C22 = P1 + P3 - P2 + P6

C11CC

C12CC

C21

C22

S0 = A11 + A22

S1 = B11 – B22

S2 = A21 + A22

S3 = B12 - B22

S4 = B21 – B11

S5 = A11 + A12

S6 = A21 – A11

S7 = B11 + B12

S8 = A12 – A22

S9 = B21 + B22

S0 ===

S1 ==S =

S2 ===

S3 ===

S4 ===

S5 ===

S6 ===

S7 ===

S8 ===

S9 ===

Stage 1 Stage 2 Stage 3

P1 = (A11 + A22) * (B11 – B22)

P2 = (A21 + A22) * B11

P3 = A11 * (B12 - B22)

P4 = A22 * (B21 – B11)

P5 = (A11 + A12) * B22

P6 = (A21 – A11) * (B11 + B12)

P7 = (A12 – A22) * (B21 + B22)

A11 A12

A21 A22

B11 B12

B21 B22

C11 C12

C21 C22
=X

C11 = P1 + P4 – P5 + P7

C12 = P3 + P5

C21 = P2 + P4

C22 = P1 + P3 - P2 + P6

P1 = S0 * S

P2 = S2 * B11

P3 = A11 * S3

P4 = A22 * S4

P5 = S5 * B22

P6 = S6 * S7

P7 = S8 * S9

P1 ===

P2 ===

P3P ===

P4P ===

P5 ===

P6 ===

P7 ===

Fig. 12. Strassen algorithm for matrix multiplication and its basic kernels

The input matrices A and B are decomposed in four sub-
matrices, which can be processed in parallel. Sub-matrices
undergo a number of sums/subtractions and multiplications.

Each of these operations is fully data-parallel. The algorithm
is naturally structured in three stages: in stage one ten sums are
computed, which we identify as S0 ... S9. These sums can be
mapped to parallel tasks, or be data-parallelized. In stage two,
seven multiplications are computed (P1 ... P7), which similarly
exhibit both data and task parallelism. Finally, in the third
stage four sets (C11 ... C22) of sums and subtractions lead to
the final result. Our strategy to parallelize the application with
tasking is the following. We create a single level of parallelism
using all the threads in the pool. We build a large parallel
region containing all the operations from the three stages in
sequence. All of the operations are data parallelized, namely,
all the threads can dynamically fetch work from all of the
loops. Ideally, this scheme can extract the maximum degree
of parallelism, and has a theoretical speedup of 16×.

To parallelize the application with the nesting approach we
follow the natural task partition of the application. Figure 13
shows a pictorial representation of this parallelization scheme.

S0 S1 S2 S3 S5 S6 S7 S8 S9

P1 P’1 P2 P’2 P3 P’3 P4 P’4 P5 P’5 P6 P’6 P7 P’7

C11 C’11 C’11 C’11 C’11 C’11 C22 C’22 C’22 C’22 C’22 C’22C12 C’12 C21 C’21

Stage 1

Stage 2

Stage 3

Task parallelism Data parallelism

Unused Threads

Nested parallelism

S4

Fig. 13. Strassen algorithm parallelized with nesting support

At stage 1, we assign all the ten sums (S0, ... , S9) to as
many threads. We do not create additional data parallelism
on the remaining six threads, because this would lead to
unbalanced execution. These left out threads remain idle in
this stage, thus ihnerently limiting the parallelization speedup
to 10×. In the second stage, the seven multiplications (P1,
... , P7) are initially assigned to seven threads. Each of these
threads generates a nested region and exploits an additional
thread thus leveraging data parallelism as well. The remaining
two threads in the global pool are left idle, thus the maximum
achievable speedup is limited to 14x. In the third stage, four
parallel threads are assigned the final sums (C11, ... , C22). The
workload contained in these tasks is unbalanced by a factor
of 3:1 for tasks C11 and C22 with respect to the other two
(three sums instead of one). By creating nested data-parallel
regions with different number of threads (C11 and C22 will run
on six threads, while C12 and C21 will run on two) we are

Nes�ng Tasking

STAGE 3 1.08% 8.04%

STAGE 2 98.45% 81.16%

STAGE 1 0.47% 10.80%

0
2
4
6
8

10
12
14
16

S
p

e
e

d
u

p
Nes ng VS Tasking

Fig. 14. Nesting and tasking speedup

0
5

10
15
20

TASKING (fine) TASKING (coarse) NESTING

S
p

e
e

d
u

p

Stage 1 - PARALLEL speedup

Ideal (Algo) Ideal (Par. Scheme) Measured

3
2

x3
2

6
4

x6
4

1
2

8
x1

2
8

TASKING (fine)

3
2

x3
2

6
4

x6
4

1
2

8
x1

2
8

TASKING (coarse)

3
2

x3
2

6
4

x6
4

1
2

8
x1

2
8

NESTING

Fig. 15. Effect of task granularity (Stage 1)

0
5

10
15
20

TASKING (fine) TASKING (coarse) NESTING

S
p

e
e

d
u

p

Stage 3 - PARALLEL speedup

Ideal (Algo) Ideal (Par. Scheme) Measured

3
2

x3
2

6
4

x6
4

1
2

8
x1

2
8

TASKING (fine)

3
2

x3
2

6
4

x6
4

1
2

8
x1

2
8

TASKING (coarse)

3
2

x3
2

6
4

x6
4

1
2

8
x1

2
8

NESTING

Fig. 16. Effect of task granularity (Stage 3)

capable of balancing the workload and exploiting all available
threads. This stage fully exploits the computational resources
of the system, with a theoretical speedup of 16x.

As a first experiment, we consider an instance of the algo-
rithm using 64x64 matrices (four 32x32 submatrices). Results
for this experiment are shown in Figure 14, where we report
the speedup achieved by the two parallelization strategies.
Overall, the theoretical speedup for the nesting approach is
≈14× (16× for tasking). It is possible to see that, notwith-
standing the threads left idle at times, the nesting approach
matches its theoretical speedup. The tasking approach, on the
contrary, is far from it. The numbers on the table below the
figure show the percentages of time spent in the three stages.
It is possible to notice two things. First, the multiplication
kernels unsurprisingly dominate execution time. Second, the
first and third stages take non negligible time with the tasking
approach as compared to nesting. This is attributable to the
overhead for distributing workload from the work-queue at a
too fine granularity.

In the following experiment we “zoom-in” these phases
to have better insight. Figure 15 shows how the execution
time of the first stage is affected by the size of the input
submatrices, which are set to 32x32, 64x64 and 128x128.
This plot confirms that for fine-grained workload (leftmost
plot) the tasking approach cannot achieve any speedups. To see
how this phenomenon can be mitigated by considering coarser
work units we increased the chunk size for the parallel loop
to its maximum (the number of iterations is evenly divided
among participating threads). Even in this case (plot in the
middle), if the matrix size is too small the overhead for
the work queue is not amortized. With bigger matrix sizes
(128x128) we achieved a 5× speedup. All of those results are
far from the theoretical speedup achievable with the tasking
parallelism because of the implementation overheads. The
rightmost plot shows how the nesting approach achieves much
better results. For matrix sizes of 128x128 this parallelization
scheme achieves its theoretical speedup peak.

Similar plots are provided in Fig. 16 for the third stage.

VI. CONCLUSION

In this paper we have presented a highly optimized imple-
mentation of nested parallelism for cluster-based embedded
MPSoCs. Our results confirm that an extremely lightweight
support for nesting enables the extraction of high degrees of
parallelism from applications. Work-queue based approaches
can be coupled to this support, but it is extremely important
that their implementation is also highly optimized to prevent
high overheads from inhibiting the potential for parallelism
exploitation, which we plan as future work.

ACKNOWLEDGMENT

This work was supported by projects FP7 VIRTI-
CAL (288574) and JTI SMECY (ARTEMIS-2009-1-100230),
funded by the European Community.

REFERENCES

[1] E. Ayguadé, X. Martorell, J. Labarta, M. Gonzalez, and N. Navarro,
“Exploiting multiple levels of parallelism in OpenMP: A case study,” in
Proceedings of the 1999 International Conference on Parallel Process-
ing, ser. ICPP ’99, 1999, pp. 172–.

[2] S. Karlsson, “A portable and efficient thread library for OpenMP,” in
In Proc. 6th European Workshop on OpenMP, KTH Royal Institute of
Technology. John Wiley, 2004, pp. 43–47.

[3] X. Martorell, E. Ayguadé, N. Navarro, J. Corbaln, M. Gonzlez, and
J. Labarta, “Thread fork/join techniques for multi-level parallelism
exploitation in numa multiprocessors,” in in NUMA Multiprocessors.
In 13th Int. Conference on Supercomputing ICS’99, Rhodes, 1999, pp.
294–301.

[4] P. Hadjidoukas and V. Dimakopoulos, “Nested parallelism in the OMPI
OpenMP/C compiler,” in Euro-Par 2007 Parallel Processing, ser. Lec-
ture Notes in Computer Science, A.-M. Kermarrec, L. Boug, and T. Priol,
Eds. Springer Berlin / Heidelberg, vol. 4641, pp. 662–671.

[5] Y. Tanaka, K. Taura, M. Sato, and A. Yonezawa, “Performance eval-
uation of OpenMP applications with nested parallelism,” in Selected
Papers from the 5th International Workshop on Languages, Compilers,
and Run-Time Systems for Scalable Computers, ser. LCR ’00, 2000, pp.
100–112.

[6] D. Novillo, “OpenMP and automatic parallelization in GCC,” in Proc.
of the 2006 GCC Summit, Ottawa, Canada (June 2006)

[7] M. González, J. Oliver, X. Martorell, E. Ayguadé, J. Labarta, and
N. Navarro, “OpenMP extensions for thread groups and their run-
time support,” in Proceedings of the 13th International Workshop on
Languages and Compilers for Parallel Computing-Revised Papers, ser.
LCPC ’00, 2001, pp. 324–338.

[8] AMD, “The AMD Fusion Family of APUs.”
[9] Apple, Inc, “The Grand Central Dispatch .”

[10] G. J. Narlikar and G. E. Blelloch, “Space-efficient scheduling of
nested parallelism,” ACM Transactions on Programming Languages and
Systems, vol. 21, 1999.

[11] ST Microelectronics and CEA. Platform2012: A Many-core pro-
grammable accelerator for Ultra-Efficient Embedded Computing in
Nanometer Technology.

[12] Plurality Ltd. HyperCore Processor. www.plurality.com/hypercore.html.
[13] NVIDIA. Next Generation CUDA Compute Architecture: Fermi -

WhitePaper. www.nvidia.com/object/ fermi architecture.html, 2010.
[14] A. Rahimi, I. Loi, M. R. Kakoee, and L. Benini, “A fully-synthesizable

single-cycle interconnection network for shared-L1 processor clusters,”
in Proceedings of the Design, Automation Test in Europe Conference
Exhibition (DATE) 2011, 2011, pp. 1 – 6.

[15] University of Edinburgh, “OpenMP Microbenchmarks V2.0.”
www2.epcc.ed.ac.uk/computing/research activities/openmpbench/
openmp index.html

[16] V. V. Dimakopoulos, P. E. Hadjidoukas, and G. C. Philos, “A mi-
crobenchmark study of OpenMP overheads under nested parallelism,”
in Proceedings of the 4th international conference on OpenMP in a new
era of parallelism, ser. IWOMP’08, 2008, pp. 1–12.

[17] www.openmp.org. OpenMP Application Program Interface v.3.0. www.
openmp.org/mp-documents/spec30.pdf

