
Dynamically Reconfigurable Hybrid Cache:
An Energy-Efficient Last-Level Cache Design

Yu-Ting Chen, Jason Cong, Hui Huang, Bin Liu, Chunyue Liu, Miodrag Potkonjak, and Glenn Reinman

Computer Science Department, University of California, Los Angeles

Los Angeles, CA 90095, USA

Email: {ytchen, cong, huihuang, bliu, liucy, miodrag, reinman}@cs.ucla.edu

Abstract—The recent development of non-volatile memory (NVM),
such as spin-torque transfer magnetoresistive RAM (STT-RAM) and
phase-change RAM (PRAM), with the advantage of low leakage and
high density, provides an energy-efficient alternative to traditional SRAM
in cache systems. We propose a novel reconfigurable hybrid cache
architecture (RHC), in which NVM is incorporated in the last-level cache
together with SRAM. RHC can be reconfigured by powering on/off
SRAM/NVM arrays in a way-based manner. In this work, we discuss
both the architecture and circuit design issues for RHC. Furthermore,
we provide hardware-based mechanisms to dynamically reconfigure RHC
on-the-fly based on the cache demand. Experimental results on a wide
range of benchmarks show that the proposed RHC achieves an average
63%, 48% and 25% energy saving over non-reconfigurable SRAM-
based cache, non-reconfigurable hybrid cache, and reconfigurable SRAM-
based cache, while maintaining the system performance (at most 4%
performance overhead).

I. INTRODUCTION

The traditional SRAM-based on-chip cache has become a bot-

tleneck for energy-efficient design due to its high leakage power.

Designers have turned their attention towards emerging non-volatile

memories, such as the spin-torque transfer magnetoresistive RAM

(STT-RAM) and phase change RAM (PRAM), to build future mem-

ory systems. Power, performance, and density characteristics of the

new memory technologies differ dramatically compared to SRAM,

and thus they enlarge the landscape of memory design.

Table I shows a brief comparison of SRAM, STT-RAM, and

PRAM technologies. The exact access time and dynamic power

depend on the cache size and the peripheral circuit implementation.

In sum, SRAM suffers from the high leakage and low density while

providing great endurance; STT-RAM and PRAM provides high

density and low leakage at the cost of weak endurance. Moreover,

STT-RAM outperforms PRAM in terms of the endurance, access

time, and dynamic power, while PRAM has higher density.

TABLE I
COMPARISON AMONG SRAM, STT-RAM, PRAM.

SRAM STT-RAM PRAM

Density 1X 4X 16X

Read time Very fast Fast Slow

Write time Very fast Slow Very slow

Read power Low Low Medium

Write power Low High High

Leak. power High Low Low

Endurance 1016 4×1012[1] 109

With desirable characteristics on leakage power and density, NVMs

have been explored as an efficient alternative for either SRAM or

DRAM in memory systems [2][3][4][5][6]. As can be seen in Table I,

compared to PRAM, STT-RAM has higher endurance (109 versus

4× 1012 write cycles) [7][1]. Based on the write cycles, we use a

similar endurance model proposed in [8] to calculate the lifetime of

PRAM and STT-RAM in an on-chip hybrid cache which consists of

1MB SRAM and 3MB NVM. Table II demonstrates the lifetime of

the hybrid cache for three write-intensive workloads selected from

medical imaging domain [9] and PARSEC [10]. For a PRAM-based

hybrid cache, the lifetime is limited, ranging from 4.70 to 196.12

days; but the STT-RAM-based hybrid cache can last for more than

tens of years. Thus, STT-RAM is more suitable for on-chip last-level

cache [2][3][4][5] design while PRAM is promising as an alternative

for DRAM in the main memory design [6]. Therefore, in this paper,

we will focus on a hybrid cache architecture with STT-RAM as the

NVM.

TABLE II
ENERGY OF 4MB RHC AND 2MB SRAM-BASED CACHE

Workloads registration segmentation fluidanimate

PRAM (days) 4.70 196.12 39.33

STT-RAM (years) 12.88 537.32 107.76

A common problem in existing hybrid cache designs [2][3] is the

lack of adaptation to varied workloads. Previous studies show that

different applications may exhibit different characteristics [11]. For

example, if the targeted application accesses a 10MB working set in

a streaming fashion, then a fixed hybrid cache design consisting of

a 2MB SRAM and 8MB NVM (as discussed in [3]) may become

inefficient in terms of both performance and energy compared to

a 2MB SRAM-only design. In the 2MB SRAM-only design, all

data blocks are put into the SRAM to achieve fast access. However,

in the 2MB SRAM with 8MB NVM design, the data blocks are

distributed in both the SRAM and NVM regions, while most blocks

are located in the NVM region. The cache miss rates are the same

for the two architectures due to the streaming access pattern, but

the performance degrades because of the longer access latency of

NVM. The energy consumption in the hybrid design is larger since it

consumes more leakage due to longer runtime and additional leakage

from NVM arrays. Also, the greater dynamic write energy on NVM

increases the total energy consumption. Therefore, if we can provide

configurability on the hybrid cache design, it can be reconfigured

to accommodate varied workloads. In this example, the hybrid cache

can be reconfigured into 2MB SRAM to achieve the best performance

and energy efficiency.
In this paper, we propose a novel reconfigurable hybrid cache

design (RHC). Our design explores the use of NVM cache to

replace the conventional all-SRAM design in the last-level cache to

efficiently reduce leakage energy. The proposed RHC design supports

reconfigurable SRAM/NVM size, with the capability of powering

on/off SRAM and NVM arrays in a way-based manner for better

accommodation of memory requirements from different workloads.

Hardware-based mechanisms are proposed to detect the cache de-

mand for dynamic reconfiguration. On average, RHC significantly

saves 64%, 46% and 28% energy over a non-reconfigurable SRAM

cache, a non-reconfigurable hybrid cache and a reconfigurable SRAM

cache, respectively, while maintaining the system performance (at

most only 4% performance overhead).

II. RELATED WORK

Because of the desirable characteristics on leakage power and

density, NVMs have been intensively investigated recently as an

978-3-9810801-8-6/DATE12/ c©2012 EDAA



efficient alternative for either SRAM in the on-chip caches or DRAM

in main memory [2][3][4][5][6]. In [2], STT-RAM and PRAM are

used to implement the lower-level cache. Two types of hybrid cache

architectures are evaluated – inter-level and intra-level, in which

NVMs are utilized either as the entire L3 cache or the slow-accessed

region in L2 cache. In [3], 3D stacking STT-RAM is used to build a

hybrid cache system with SRAM. However, none of the prior works

have considered dynamic powering on/off of SRAM and NVM arrays

to adapt to varied workloads.

Dynamically reconfigurable caches are investigated for pure SRAM

caches to either reduce the energy consumption via power gat-

ing [12][13][14][15][16], or provide dynamic flexible support of

software-managed memories to the core through a cache line control

bit [17][18]. The key to these approaches is the dynamic assessment

of runtime cache pressure. In [12], researchers use a single miss

counter to measure the demand of an instruction cache to perform

reconfiguration. Missing tags or victim tags are used in [13][14][18]

to assess the cache pressure. When a cache miss occurs, the tag

of the victim block will overwrite the LRU tag of the same set in

victim tags and will be marked as the MRU victim tag. If there

is a cache miss and victim tag hit, this indicates that a potential

hit would occur if the requested block were held in the cache. The

authors in [15] use a time-based counter for each cache block, which

will be reset once there is a hit to that block. Once the time while

the counter maintaining non-zero status exceeds a given decaying

period, the block will be turned off to save leakage. However, none of

the existing dynamic reconfiguration schemes have considered hybrid

memory technologies.

To the best of our knowledge, this paper is the first work to explore

the dynamic cache reconfiguration for hybrid memory technologies

in order to reduce the cache energy consumption.

There are also works investigating endurance reduction for the

NVMs. In [6][19], wear-leveling techniques are proposed for a

PRAM-based memory system to enhance the lifetime. Recent work

in [1] uses periodic set-remapping to distribute the writes among sets

in a STT-RAM cache. Another study migrates the write-intensive

cache blocks to other cache lines in the same/different cache set or

in the SRAM to reduce the average write frequency of the STT-

RAM (or PRAM) cache lines [8]. These works are orthogonal and

complementary to our proposed reconfigurable hybrid cache designs.

III. RECONFIGURABLE HYBRID CACHE DESIGN

In this section we discuss the RHC design in the following way.

First, we present the architecture and circuit design of the RHC with

disparate SRAM and NVM technologies. Next, the reconfigurability

support for the RHC is discussed. Finally, we propose hardware-based

schemes for dynamic reconfiguration.

A. Hybrid Cache Architecture

Figure 1 shows an overall structure of RHC. In RHC the data array

is partitioned into SRAM and NVM at a cache-way granularity. One

concern of RHC design is that the access latency of a NVM cell

is longer than that of SRAM [2]. In a simple hybrid cache design

where the tag and data arrays of each cache way are implemented

either with all SRAM cells or NVM cells, the cache critical path will

always be dominated by the longer access latency to the NVM cache

ways. To overcome this, RHC is designed in the following way. First,

the accesses to the tag array and data array are done sequentially, (i.e.

the data array will be accessed after the tag array). Such a serialized

tag/data array access has already been widely adopted in a modern

low-level large-scale cache for energy reduction. Second, the RHC

tag array is fully implemented with SRAM cells. In RHC, each tag

entry contains only four bytes, including the tag, coherence state

bits, and the dirty bits, etc., while each cache block in the data array

contains 64 bytes. Hence, the SRAM-based RHC tag array will not

create a large energy overhead.

The circuit design of RHC with STT-RAM as the NVM is as

follows. First, an STT-RAM cell has a bitline (BL) and a source-line

(SL) for its operation. This is similar to the bitlines (BL, BLB) used

in SRAM. Therefore, the organization of an STT-RAM data array is

almost the same as an SRAM data array. Second, the sense amplifiers

need to be modified due to the single-ended bitlines [4]. According

to a recent implementation [20] of an STT-RAM array, the reference

voltage is 1.2V, which is close to an SRAM-based design. Therefore,

additional power-supply pins to support the read/write accesses of

the STT-RAM array may not be required.

Fig. 1. Reconfigurable hybrid cache (RHC) design

B. RHC Reconfiguration Design

The reconfiguration in RHC is realized by powering on/off SRAM

and NVM arrays arbitrarily in a way-based manner. From an architec-

tural point of view, the reconfiguration mechanism in RHC is similar

to the existing way-based reconfigurable SRAM cache [21]. Data

accesses will not be directed to a disabled cache way, thus those

ways in the data array dissipate no dynamic power. Note that the

replacement decision logic within the cache controller must ensure

that no data will be allocated to a disabled cache way.

In Figure 2 we illustrate the power-gating design adopted in RHC.

A centralized power management unit (PMU) is introduced to send

sleep/wakeup signals to power on/off each SRAM or NVM way.

The power-gating circuits of each way in SRAM tag/data arrays are

implemented with NMOS sleep transistors to minimize the leakage.

In this design the stacking effect of three NMOS transistors from the

bitline to GND substantially reduces leakage [12]. Note that in RHC

the SRAM cells in the same cache way will be connected to a shared

virtual GND while the virtual GNDs among different cache ways are

disconnected. This can ensure that the behaviors of cache ways that

are powered-on will not be influenced by the powering-off process

in other ways.

For the peripheral circuits, such as the row decoder, column

decoders, word drivers, and sense amplifiers, we use PMOS sleep

transistors to implement the power-gating design; this can provide

better performance of the peripheral circuits in the active mode

[16]. Since the NVM cell itself consumes little leakage, we do not

introduce extra power-gating circuits for the cells of NVM data

arrays. To power on/off a NVM cache way, PMU will send a

sleep/wakeup control signal to the peripheral circuits of the corre-

sponding NVM way. The design complexity of the PMU is highly

related to the adopted wakeup scheme. In this work we assume

a daisy-chain wakeup scheme for each cache way [22]. For the

PMU, we use Synopsys SAED 90nm technology, which is the most

advanced process technology available, to obtain the energy and

delay numbers. An RTL-level description of PMU is synthesized by



Synopsys Design CompilerT M . The dynamic energy is 0.0135pJ for

one reconfiguration, while the leakage power is 1.0378uW. The delay

of the PMU is 0.28ns. The overhead of the PMU is small and thus

can be neglected.

The overhead of the reconfiguration will be classified in the

following two categories. First, when a cache way is disabled, the

dirty blocks in that cache way need to be written back to lower-level

memory. This will introduce both performance and energy overhead.

Second, from a circuit-level perspective, the power-up process also

involves extra energy consumption. The reason for this is that the

accumulated charge during the standby mode in SRAM cells should

be discharged.

Fig. 2. Power-gating design for RHC

C. Dynamic Reconfiguration

In this section, we propose two hardware schemes to utilize the

reconfigurability provided by RHC. The main idea is to detect the

cache demand dynamically and reconfigure the RHC in a way-based

manner to satisfy the demand. In the meantime, the powered-off cache

ways can provide energy savings in leakage.

1) Way-Based Decay Scheme: The reconfiguration scheme in-

cludes two dynamic decisions: (1) when to power off a cache way

and (2) when to power on a cache way. To power off a cache way,

we utilize the cache decay idea [15], and introduce the novel way-

based decay counters, as shown in Figure 3. The main idea of cache

decay is to power off a cache block which is not accessed for a long

time period to save leakage. This time period is called the decay

interval. Cache decay is implemented by a local 2-bit saturating

counter for each block with a global cycle counter. The local counter

is incremented when the global counter exceeds a certain number

of clock cycles, which is used to model the decay interval. The

local counter is reset to zero when there is an access on this block.

Cache decay is initially used to provide a self-guided block-based

power-on/off mechanism [15]. However, it is not feasible for PMU to

arbitrate reconfiguration at the block-based granularity due to circuit

design complexity. Therefore, we use the way-based decay counter

to measure the number of decay blocks in that cache way during

a time period. The way-based decay counter is incremented by one

when any local 2-bit counter in that cache way saturates. Similarly,

when a local 2-bit counter is reset to zero, the corresponding way-

based decay counter is decreased by one. If the value of a way-based

decay counter exceeds a given threshold in a given time period, such

as 90% (used in this work) of the blocks in that way, the whole cache

way will be powered off due to the low cache demand.

To detect the demand for powering on more cache ways, we keep

the whole tag array powered-on to record potential hits if those blocks

are in RHC. The potential hit counter is increased by one when a hit

occurs on a tag entry whose corresponding data block is powered off

(referred to as the victim tags [14][18]). The victim tags reuse the

same tag array, which does not create extra storage overhead. The

replacement policy for the victim tags follows LRU policy. When the

value of potential hit counter is greater than a threshold, a cache way

is powered on to reduce cache misses. We denote this powering-on

threshold as T Hon. Note that the power-on/off decision is made for

every one-million cycles in this work. This time period is called the

recon f iguration period. Both the way-based decay counters and the

potential hit counter are reset to zero after the decision is made.

Fig. 3. Counters for dynamic reconfiguration

2) Independent Potential Hit Counters Scheme: In this section,

we provide an improved strategy to for dynamic reconfiguration. In

the way-based decay scheme, a large number of cache ways can

be powered off simultaneously since each cache way is controlled

independently. However, we observe that this aggressive powering-

off scheme may result in significant performance degradation due to

the increase of L2 cache misses especially when the decay interval is

small, such as one million cycles. Another potential problem is that

a single decay interval cannot accurately capture the varied decay

intervals of all cache blocks, which also makes the way-based decay

counter ineffective. When the decay interval is too large, such as 100

millions cycles, most of the blocks are accessed once during that

interval. The powering-off decisions are seldom made and thus the

energy reduction is limited.

The improved scheme takes both the hybrid nature of RHC and

the aggressive powering-off issue into consideration. Considering

the hybrid nature of RHC, it is beneficial to measure the cache

demand for the SRAM and STT-RAM arrays independently to better

accommodate the cache demand. Therefore, we use two potential hit

counters to measure the cache demand of the SRAM and STT-RAM

arrays independently.

The powering-off strategy is different from that of the way-

based decay scheme. Here, we use the same potential hit counter

to make the powering-off decision. We introduce another powering-

off threshold (T Ho f f ). When the value of the potential hit counter

is less than or equal to T Ho f f , a cache way can be powered off.

Based on the strategy, only one cache way can be powered off at a

time period, and this greatly reduces the chance of cache thrashing.

However, according to our observation, this strategy still generates

considerable cache misses. To mitigate the aggressive powering-off

strategy, we further restrict the powering-off condition. When the

value of the potential hit counter reaches T Ho f f , we cannot power

off a cache way immediately. A cache way can only be powered

off after ten consecutive reconfiguration periods (ten-million cycles)

have passed. Note that T Hon is set to 50 and T Ho f f is set to 0 for

both SRAM and STT-RAM arrays for evaluation.

Furthermore, we consider the endurance of RHC when making

decisions of reconfiguration. We achieve this by randomly selecting

the cache way from all possible candidates. For example, when the

decision is to power off a cache way, we will randomly pick the

victim from all powered-on cache ways.

IV. EVALUATION METHODOLOGY

A. Performance and Energy Models

We evaluate the proposed RHC design on a simulation platform

built upon Simics [23] with GEMS [24]. Table III shows the pa-

rameters used in our model. The value K represents the number of



cache ways that are powered on in a specific L2 cache configuration,

which also equals the amount of “active” cache associativity. Notice

that the configuration of the processor core, L1 caches, and main

memory remains the same through all simulations.

TABLE III
SIMULATION PARAMETERS

single-thread workload multi-thread workload

#Core 1 4

Core Sun UltraSPARC-III Cu processor core, 4GHz

L1 Cache 32KB per core for I/D caches
4-way, 64-byte block, 1-cycle latency

L2 Cache RHC: 1MB SRAM + 3MB STT-RAM
SRAM-based: 2MB
K-way (K≤16), 64-byte block

L2 Cache SRAM: 10 cycles
Access Lat. STT-RAM read/write: 11/30 cycles

Main Memory 4GB, 320-cycle access latency

For the energy of the memory technologies, we use the ITRS 32nm

process model. The SRAM and STT-RAM energy/latency numbers

used in our simulations are obtained from CACTI 6.5 [25] and

the data scaled from [4], respectively. The energy numbers of a

4MB RHC and 2MB SRAM-based cache are listed in Table IV,

where Active and Standby correspond to the power-on and power-

off state. The standby leakage is estimated according to the ratio

of active/standby leakage presented in [12]. This can be achieved

through a careful power-gating design.

TABLE IV
ENERGY OF 4MB RHC AND 2MB SRAM-BASED CACHE

L2 Cache Tech. Dyn. energy Active Standby
Design per acc. (nJ) leak.(mW) leak.(mW)

4MB RHC SRAM 0.137 431.30 14.38
STT- Read: 0.278 116.92 3.897
RAM Write: 0.765

2MB SRAM 0.288 711.29 23.71

B. Benchmarks

Our testbenchs consist of 16 benchmark applications, which have

been carefully chosen to represent memory intensive algorithms

in the fields of data processing, massive communication, scientific

computation and medical applications. The applications include seven

memory-intensive applications from SPEC2006 [26], four applica-

tions from PARSEC [10], and five applications from the medical

imaging domain [9].

TABLE V
WORKLOADS

Benchmark Applications

SPEC2006 bzip2, mcf, soplex, libquantum,
h264ref, lbm, astar

PARSEC(simmedium) blackscholes, swaptions, fluidanimate,
bodytrack

Med. Imaging rician-denoise, gaussian-deblur, registration,
segmentation, compressive sensing

C. Reference Designs

To evaluate the effectiveness of RHC, we compare RHC with a

traditional SRAM-based cache under the same area basis. RHC is set

to 4MB, which is composed of 1MB SRAM and 3MB STT-RAM,

while the SRAM-based cache is set to 2MB. This setting reflects the

fact that STT-RAM is about four times denser than that of SRAM.

The area of the data arrays in 4MB RHC is about 0.875X that of the

2MB SRAM-based cache.

The associativity of both the 4MB RHC and 2MB SRAM-based

cache are both 16-way. This setting provides the same reconfig-

urability on RHC and SRAM-based cache. RHC has four SRAM

ways and 12 STT-RAM ways, while the SRAM-based cache has

16 SRAM ways. Both can be reconfigured from one cache way to

16 cache ways. To evaluate the effectiveness of RHC, we compare

the performance and energy of RHC with three reference points:

(1) SC: non-reconfigurable 2MB SRAM-based cache; (2) HC: non-

reconfigurable 4MB hybrid cache (4-way SRAM + 12-way STT-

RAM); and (3) RSC: reconfigurable 2MB SRAM-based cache. Note

that the evaluation in Section V-A and Section V-C utilizes the scheme

introduced in Section III-C2 for both RHC and RSC while RSC uses

a single potential hit counter.

V. RESULTS

A. Effectiveness of RHC

Figure 4 shows the comparison results of L2 cache miss rate.

Compared to the baseline SC, HC consistently has a lower miss

rate (39% on average) because of the 2X larger cache capacity

provided by the STT-RAM. But this consistent miss rate improvment

is realized at the cost of more energy consumption compared to RSC

and RHC, which will be discussed later. On the other hand, since

RSC dynamically powers off the cache ways - although this is done

based on the cache pressure - the reduced cache capacity consistently

impairs the cache performance (77% more cache misses), especially

when the dynamic reconfiguration scheme can not accurately capture

the cache behavior. This can be observed in bzip2 and libquantum.

Compared to the baseline SC, there are two main scenarios with

RHC: 1) for the cases where the applications have relatively large

working set (such as bzip2, deblur and compressive sensing), RHC

can achieve a considerable miss rate reduction of 52% on average; 2)

for the cases where the applications have relatively small working set

which can be held for a 2MB L2 cache, RHC will gradually power

off half of the cache capacity. But during this process, some of the

cache blocks with long reuse distance will be evicted which results

in slightly higher miss rate. Overall, RHC incurs 33% more cache

misses compared to SC.

Figure 5 shows the comparison results of system performance in

terms of runtime of the application on the system. These results are

normalized to that of the baseline SC scheme. The runtime difference

of the four design schemes mainly comes from the difference of the

L2 cache miss rate. Compared to the baseline SC, HC consistently

has better performance (0% to 36% less runtime) because of its

consistently smaller miss rate, while RSC consistently has worse

performance (0% to 9% more runtime) due to its consistently larger

miss rate. For the cases where RHC can achieve considerable L2

miss rate reduction, it also improves the performance (1% to 34%

less runtime) over SC. For the other cases, RHC incurs a slight

performance overhead (0% to 4% worse runtime).

When it comes to energy, the power of the dynamic reconfig-

uration begins to show gain. Figure 6 shows the comparison of

memory subsystem energy, The energy data is broken down into the

L1 cache dynamic/leakage energy, and the L2 cache SRAM/STT-

RAM dynamic/leakage energy for detailed illustration of the energy

distribution. These results are normalized to that of the baseline SC

scheme. The SRAM leakage dominates the memory subsystem en-

ergy in 32nm technology. Compared to the baseline SC, HC reduces

energy by 24% to 53% (30% on average), because the STT-RAM

array consumes less leakage. In addition, HC consistently reduces the

runtime, which reduces the SRAM leakage. By dynamically powering

off the cache ways based on cache pressure, RSC can also reduce the

energy by 7% to 88% (51% on average). In cases of bzip2, deblur and

compressive sensing where the powering-on time of the remaining

cache ways incurs a energy overhead which almost catches up with



Fig. 4. Comparison results of L2 cache miss rate

Fig. 5. Comparison results of runtime

Fig. 6. Comparison results of memory subsystem energy

Fig. 7. Comparison results of ED product

the reduction of the leakage in the powering-off cache ways, the

energy reduction of RSC is much smaller than the other cases. By

dynamically powering off the cache ways and maintaining the system

performance, RHC achieves the least energy among all the design

schemes since RHC inherits the advantages of both the low leakage

NVM array and dynamic reconfiguration to save leakage. It reduces

energy by 63%, 48%, 25% compared to baseline SC, HC and RSC,

respectively.

To better illustrate the gain over other design schemes in terms of

both energy and runtime, we use the metrics of energy-delay product

(ED) to make the comparison, where the delay means the runtime.

Figure 7 shows the comparison results of this metric over the four

design schemes. All results are normalized to that of the baseline

SC. The proposed RHC achieves the best ED among all the design

schemes. On average, RHC improves the ED by 64%, 46%, and 28%

compared to SC, HC and RSC, respectively.

B. Comparison of Two Dynamic Schemes

For the way-based decay scheme with independent potential hit

counters (IPHC), we evaluate three different decay intervals (1M,

10M, and 50M cycles). When the decay interval is larger, more

cache ways are powered-on to maintain the performance. The largest

interval we used is 50M cycles since the simulation results remains

the same even when we enlarge the decay interval. Figure 8(a) shows

the comparison results of runtime. The results are normalized to

the baseline HC. The most critical disadvantage of the way-based

decay scheme comes from the significant performance degradation,

as shown in Figure 8(a). When the decay interval is set to 1M cycles,

the performance drops from 2% to 131% compared to HC. Even when

the decay interval is set to 50M cycles, swaptions still suffers from

27% performance degradation. In contrast, IPHC can provide stable

performance within a 4% degradation compared to HC among all

workloads.

Figure 8(b) shows the comparison of energy. IPHC can achieve

better or at least similar energy reduction compared to the cases of

10M and 50M decay intervals. Therefore, IPHC can further provide

energy savings when maintaining similar performance compared

to the 50M decay interval case. When the decay interval is set

to 1M cycles, the way-based decay scheme achieves much better

energy saving on bzip2, segmentation, and comp.sensing. However,

bzip2 and comp.sensing suffer from 122% and 24.2% performance

overhead compared to IPHC. In summary, IPHC provides consistent

performance compared to baseline HC while providing considerable

energy saving. The way-based decay scheme suffers from potential

performance degradation problem and the choice of a suitable decay

interval varies from workloads.



(a) Runtime

(b) Energy consumption

Fig. 8. Comparison of runtime and energy on two dynamic schemes

C. Endurance Analysis

Table VI shows the endurance comparison between HC and RHC.

The lifetime calculation is based on the method from [8] and the

write cycles is 4 × 1012 [1]. RHC can achieve from 1.08X to

3.53X lifetime enhancement on most of the workloads except bzip2,

soplex, segmentation, and swaptions. For bzip2 and segmentation,

the lifetimes of our scheme are still in a reasonable range. Through

the random selection of powered-on/off victims, some write-intensive

data blocks may have chance to be swapped out to main memory

and thus the pressures of the most write-intensive cache blocks

can be alleviated. Therefore, our reconfigurable scheme can achieve

reasonable lifetime compared to HC even when available cache ways

are decreased due to reconfiguration. However, we observe the non-

uniform distribution of write accesses as mentioned in the previous

work [1][8]. A suitable wear-leveling technique is still required to

achieve better endurance.

TABLE VI
ENDURANCE COMPARISON OF 4MB NON-RECONFIGURABLE HYBRID

CACHE (HC) AND 4MB RHC (UNIT: YEAR)

Workloads HC RHC Workloads HC RHC

bzip2 299.92 200.24 g.-deblure 76.68 116.36

mcf 8.40 29.68 registration 12.88 30.68

soplex 4.64 4.6 segmentation 537.32 256.4

libquantum 2.82 4.2 comp. sensing 3.28 3.56

h264ref 22.76 41.88 blackscholes 3.144 5.44

lbm 228.96 253 swaptions 7.36 3.4

astar 16.00 30.08 fluidanimate 107.76 118.56

r.-denoise 53.44 118.8 bodytrack 9.76 10.28

VI. CONCLUSIONS

We propose an energy-efficient last-level cache design – reconfig-

urable hybrid cache (RHC). In RHC different memory technologies

(SRAM and NVM) are unified at the same cache level to form a

hybrid design, and power gating circuitry is introduced to allow

adaptive powering on/off of SRAM/NVM sub-arrays at way level.

Experimental results show that, the proposed the proposed RHC

achieves an average 63%, 48% and 25% energy saving over non-

reconfigurable SRAM-based cache, non-reconfigurable hybrid cache,

and reconfigurable SRAM-based cache, while maintaining the system

performance (at most 4% performance overhead).

VII. ACKNOWLEDGEMENTS

This work is partially supported by the SRC Contract 2009-

TJ-1984, and the Center for Domain Specific Computing (NSF

Expedition in Computing Award CCF-0926127).

REFERENCES

[1] Y. Chen, W.-F. Wong, H. Li, and C.-K. Koh, “Processor caches built
using multi-level spin-transfer torque ram cells,” in Proc. ISLPED 2011,
2011, pp. 73–78.

[2] X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, and Y. Xie, “Hybrid
Cache Architecture with Disparate Memory Technologies,” in Proc.
ISCA, 2009, pp. 34–45.

[3] G. Sun, X. Dong, Y. Xie, J. Li, and Y. Chen, “A Novel Architecture of
the 3D Stacked MRAM L2 Cache for CMPs,” in Proc. HPCA, 2008,
pp. 239–249.

[4] X. Dong, X. Wu, G. Sun, Y. Xie, H. Li, and Y. Chen, “Circuit and
Microarchitecture Evaluation of 3D Stacking Magnetic RAM (MRAM)
as a Universal Memory Replacement,” in Proc. DAC, 2008, pp. 554–559.

[5] M. Rasquinha, D. Choudhary, S. Chatterjee, S. Mukhopadhyay, and
S. Yalamanchili, “An Energy Efficient Cache Design Using Spin Torque
Transfer (STT) RAM,” in Proc. ISLPED, 2010, pp. 389–394.

[6] B. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting Phase Change
Memory as a Scalable DRAM Alternative,” in Proc. ISCA, 2009, pp.
2–13.

[7] International Technology Roadmap for Semiconductors (ITRS) Website,
http://www.itrs.net/Links/2009ITRS/Home2009.htm.

[8] A. Jadidi, M. Arjomand, and H. Sarbazi-Azad, “High-endurance and
performance-efficient design of hybrid cache architectures through adap-
tive line replacement,” in Proc. ISLPED, 2011, pp. 79–84.

[9] A. Bui, K.Cheng, J. Cong, L. Vese, Y. Wang, B. Yuan, and Y. Zou,
“Platform Characterization for Domain-Specific Computing,” in Proc.
ASPDAC, 2012.

[10] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark
Suite: Characterization and Architectural Implications,” in Proc. PACT,
2008, pp. 72–81.

[11] P. Ranganathan, S. Adve, and N. P. Jouppi, “Reconfigurable Caches and
their Application to Media Processing,” in Proc. ISCA, 2000, pp. 214–
224.

[12] M. Powell, S. Yang, B. Falsafi, K. Roy, and T. N. Vijaykumar, “Gated-
Vdd: A Circuit Technique to Reduce Leakage in Deep-Submicron Cache
Memories,” in Proc. ISLPED, 2000, pp. 90–95.

[13] M. Zhang and K. Asanovic, “Fine-grain CAM-tag cache resizing using
miss tags,” in Proc. ISLPED, 2002, pp. 130–135.

[14] H. Zhou, M. C. Toburen, E. Rotenberg, and T. M. Conte, “Adaptive mode
control: A static-power-efficient cache design,” ACM Trans. Embed.
Comput. Syst., pp. 347–372.

[15] S. Kaxiras, Z. Hu, and M. Martonosi, “Cache Decay: Exploiting Gen-
erational Behavior to Reduce Cache Leakage Power,” in Proc. ISCA,
2001, pp. 240–251.

[16] J. Chang, M. Huang, J. Shoemaker, J. Benoit, S.-L. Chen, W. Chen,
S. Chiu, R. Ganesan, G. Leong, V. Lukka, S. Rusu, and D. Srivastava,
“The 65-nm 16-MB Shared On-Die L3 Cache for the Dual-Core Intel
Xeon Processor 7100 Series,” in JSSC, 2007, pp. 846–852.

[17] D. Chiou, P. Jain, L. Rudolph, and S. Devadas, “Application-
specific Memory Management for Embedded Systems Using Software-
Controlled Caches,” in Proc. DAC, 2000, pp. 416–419.

[18] J. Cong, K. Gururaj, H. Hunag, C. Liu, G. Reinman, and Y. Zou, “An
Energy-Efficient Adaptive Hybrid Cache,” in Proc. ISLPED, 2011, pp.
67–72.

[19] M. Qureshi, M. Franceschini, L. A. Lastras-Montaño, and J. Karidis,
“Morphable Memory System: A Robust Architecture for Exploiting
Multi-Level Phase Change Memories,” in Proc. ISCA, 2010, pp. 153–
162.

[20] K. Tsuchida and et al., “A 64Mb MRAM with Clamped-Reference and
Adequate-Reference Schemes,” in Proc. ISSCC, 2010, pp. 258–259.

[21] D. H. Albonesi, “Selective Cache Ways: On-Demand Cache Resource
Allocation,” in Proc. MICRO, 1999, pp. 248–259.

[22] K. Shi and D. Howard, “Challenges in Sleep Transistor Design and
Implementation in Low-Power Designs,” in Proc. DAC, 2006, pp. 113–
116.

[23] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A Full
System Simulation Platform,” in IEEE Computer, 2002, pp. 50–58.

[24] M. Martin, D. Sorin, B. Beckmann, M. Marty, M. Xu, A. Alameldeen,
K. Moore, M. Hill, and D. Wood, “Multifacet’s General Execution-
Driven Multiprocessor Simulator(GEMS) Toolset,” in Computer Archi-
tecture News, 2005, pp. 92–99.

[25] CACTI 6.5, http://www.hpl.hp.com/research/cacti/.
[26] SPEC Benchmark, http://www.spec.org/cpu2006, 2006.


