
TagTM - Accelerating STMs with hardware tags for

fast meta-data access

Srd̄an Stipić∗, Saša Tomić∗, Ferad Zyulkyarov∗, Adrián Cristal∗†, Osman Unsal∗, Mateo Valero∗

{srdjan.stipic, sasa.tomic, adrian.cristal, osman.unsal, mateo.valero}@bsc.es

feradx.zyulkyarov@intel.com⋆

∗Barcelona Supercomputing Center †IIIA - Artificial Intelligence Research Institute - CSIC - Spanish National Research Council

Abstract—In this paper we introduce TagTM, a Software
Transactional Memory (STM) system augmented with a new
hardware mechanism that we call GTags. GTags are new hard-
ware cache coherent tags that are used for fast meta-data access.
TagTM uses GTags to reduce the cost associated with accesses
to the transactional data and corresponding metadata. For the
evaluation of TagTM, we use the STAMP TM benchmark suite.
In the average case TagTM provides a speedup of 7-15% (across
all STAMP applications), and in the best case shows up to 52%
speedup of committed transaction execution time (for SSCA2
application).

I. INTRODUCTION

The industry shift towards chip multiprocessors (CMPs) has

put many researchers to study new techniques which would

make parallel programming easier. One such technique is

Transactional Memory (TM) [8], [10]. TM is a concurrency

control mechanism which abstracts the complexity of pro-

gramming with locks by using a much simpler programming

interface based on transactions. Implementations of TM exist

in both hardware and software. Hardware TM (HTM) systems

are realized in form of extensions at the micro-architectural

level and software TM (STM) are realized entirely in software.

HTMs have good performance but are complex to imple-

ment and are not flexible (may not respond well to future

software requirements). On the other side, while STMs are

flexible and can be easily tuned to a specific application

without requiring any architectural changes, they are orders

of magnitude slower than HTM [5]. It is notoriously known

that the poor performance of STMs is due to the overheads

which are incurred during the maintenance of transactional

metadata. After a quick profiling we found that transactional

overheads can constitute up to 5 times of the total program

execution confirming conclusions which already exist [5], [16]

(see Figure 1).

In a nutshell, STM systems need to maintain transactional

metadata to detect conflicts for every memory word. This

metadata is accessed on every transactional operation (i.e.

tx_read and tx_write) thus doubling the cost of the

memory operations inside transactions. In addition, typical

⋆This work was conducted while Ferad Zyulkyarov was in Barcelona
Supercomputing Center.

0.00%

50.00%

100.00%

150.00%

200.00%

250.00%

300.00%

350.00%

400.00%

450.00%

500.00%

N
o

rm
a

li
z
e

d
 t

o
 n

o
n

-t
x
 e

x
e

c
u

ti
o

n

The overhead of STM operations

read

validate

commit

other

Fig. 1. STM overheads running one CPU.

STM implementations store the transactional metadata sepa-

rately from its data. Because of this poor locality the accesses

to metadata can be further penalized with a cache miss while

loading the actual data.

In this paper, we propose architectural extension to reduce

the STM overheads of accessing the metadata. In particular,

the extensions allow (i) accessing both the data and its

metadata with a single memory operation instead of two and

(ii) fetching both the data and the metadata together thus

eliminating the cache misses due to poor spatial locality. We

describe our extensions which we call Global Tags (GTags)

in Section II. GTags extend the computers’ memory hierarchy

with coherent metadata tags and a set of instructions to operate

them. In Section III we introduce TagTM, an extension of

STM library with GTags. We use GTags for accelerating the

maintenance of the transactional metadata. In Section IV we

present an evaluation of TagTM, in Section V we discuss the

related work, and in Section VI we conclude.

II. GLOBAL TAGS (GTAGS)

In this this section we introduce global tags (GTags), a

mechanism for annotating transactional data at cache line

granularity across the different levels of the memory hierarchy.

In our design GTags extend every cache line with 32-bit tags.1

These tags are associated with the data in the cache lines and

1The tags can be 32 or 64 bits. In the case of TagTM 32-bits were sufficient.978-3-9810801-8-6/DATE12/ c© 2012 EDAA



New ISA instructions Description

ldt r1 ← T[r2] Load tag

stt T[r1] ← r2 Store tag

cast T[r1] ← r2 if T[r1] == r3 Compare tag and swap tag

ldtv r2 ← T[r1], r3 ← M[r1] Load tag and value

sttv T[r1] ← r2, M[r1] ← r3 Store tag and value

castv T[r1] ← r2, M[r1] ← r3 if T[r1] == r4 Compare tag and swap tag and value

TABLE I
GTAGS MANIPULATION INSTRUCTIONS

kept always coherent. When a cache line is invalidated, its tag

is also invalidated and vice versa.

GTags are accessed and modified with the special tag

manipulation instructions which are shown in Table I. Fur-

thermore, all instructions in the table are executed atomically.

All the instructions that operate on the addresses that fall in

the same cache line share the same tag.

Extending memory hierarchy with GTags requires small

architectural changes which affect the CPU caches and the

memory controller. In our particular case, we store GTags at

the data part of the cache lines. Such a design decision allows

reading and writing the GTags with simple load/store like

instructions and does not require any changes to the otherwise

complicated cache lookup logic.

In the main memory, we store the tags separately from

the data in special GTag-pages. The GTag-pages are allocated

statically and occupy the end of the physical address range.

This allocation enables easy mapping of the physical address

to the corresponding tag. The memory controller does a simple

shift operation and adds an offset to calculate the physical

address of the corresponding tag. In our simulations, we model

a memory controller which can automatically fetch and store

both the data and the tag from their corresponding pages

(Figure 2). With such functionality, the tags are preserved

when the cache lines and the tags are evicted from the cache.

III. TAGTM

In this section we introduce TagTM, the modified version

of TinySTM. The goal of this section is to demonstrate how

to use GTags to improve the performance of an STM library.

In Section III-A we explain how TinySTM works and in Sec-

tion III-B we describe the bottlenecks in the implementation

of TinySTM and later we show how to extend transactional

operations with GTags.

A. TinySTM

Felber et al. proposed TinySTM[12], a lightweight and

efficient word-based STM system. TinySTM implements

timestamp-based versioning algorithm. It utilizes a shared ar-

ray of locks (SAL) to manage concurrent accesses to memory.

Each lock covers a portion of the address space. The least

significant bit of the lock indicates if the lock is owned, and

the remaining bits of the lock store the version number that

corresponds to the commit timestamp of the transaction that

last updated the memory location covered by the lock.2

2For the full implementation, please refer to the original paper.

Cache lines GTags

Memory

Write back

 Write back

Program pages

Tag pages

Cache

Fig. 2. Cache line eviction

B. Bottlenecks in TinySTM

Figure 1 shows the breakdown of runtime for STAMP

applications using TinySTM for a single processor run.

The overheads are divided in 4 important parts: tx_read,

tx_validate, tx_commit, and other. It is important to

note that all these overheads do not exist in non-transactional

execution. tx_read is a dominant overhead for Genome, K-

means, Vacation, and Yada. The total overhead can be up

to 69.82% (in the case of Vacation-high) compared to the

non-transactional execution time. tx_commit is a dominant

overhead for Intruder, and SSCA2, and adds up to 200.4% (in

the case of SSCA2). tx_validate is a significant overhead

for SSCA2 (98.59%).

C. Using GTags in TinySTM

In Section III-B we show that the performance-critical

operations in TinySTM are tx_read, tx_commit, and

tx_validate. All these operations can benefit from the use

of GTags. GTags and timestamp-based versioning STMs are

a natural fit because the SAL can be stored in the tags, next

to the actual data. Because of the tight coupling of the tags

and the data in the cache lines, the lock access will force the

inclusion of the memory location to the cache. This acts as

“free” prefetching of the corresponding memory location that

will be used in the transaction. This improves the performance

of tx_read operation that is on the critical path of the

transactional execution (tx_read always reads the lock from

the SAL to get the version number). With GTags, the combined

write-back of the tag and the new memory value saves one

write to the memory per write-set entry. As we demonstrate

later, this can provide big improvements of the tx_commit

operation in large transactions. tx_validate also benefits

from GTags by having better cache locality. In the following

sections we explain in detail how to extend TinySTM with

GTags.

D. Improving the tx_read operation

In typical lazy versioning TM systems, an unmodified

tx_read operation consists of three phases: (i) the query

of the write-set phase, (ii) the address and version read phase,

and (iii) the read-set update phase. On Figure 3, we can see

the pseudo code for the tx_read operation while the address

and version read phase of tx_read is represented explicitly

in the code, and graphically. This part of the code can not



tx_read(addr) {

  <write_set_query>

read_value_start:

  version0 = load_lock(&addr);

  value = *addr;

  version1 = load_lock(&addr);

  if (version0 != version1) { goto read_value_start;}

  <read_set_update>

  return value; }

Cache lines

(1)

(3)

version0

value

CPU
Cache

Registers
version1

(1)

(2)

(3)

Fig. 3. Tx_read in lazy versioning STM.

be optimized by the compiler, because the exact ordering of

the read instructions is necessary for the correct execution of

tx_read.

To improve the performance of the tx_read operation,

we use GTags’ load tag and value instruction (Table I) to

combine the read of the memory address and the read of

the corresponding lock. This improves the performance of

tx_read by reducing the number of cache accesses in the

address and version read phase, which reduces the number

of cycles spent waiting for the memory subsytem. The use

of GTags in tx_read is presented on Figure 4 where the

single load tag and value instruction is executed to load the

address value and version, instead of 3 separate instructions.

This simplifies the tx_read operation and improves its

performance. Because tx_read operation is on the critical

path in STMs [18], this has positive impact to the application’s

performance. In Section IV, we show the reduction in the

number of executed cycles for the second phase of tx_read.

E. Improving the tx_commit operation

In typical lazy versioning TM systems, unmodified

tx_commit consists of three phases: (i) the lock acquisition

phase, (ii) the validation phase, and (iii) the write-back3

phase (Figure 5). The write-back phase of tx_commit is

represented explicitly in the code, and graphically.

To improve the performance of tx_commit operation, we

use GTags’ store tag and value instruction to combine the

write to the memory address and the write to the corresponding

lock. This improves the performance of the write-back phase

by reducing the number of executed instructions, and the

number of updated cache lines, and by releasing the lock

earlier and thus publishing the results sooner.

The use of GTags in tx_commit is presented in Figure 6.

The code for the lock acquisition phase and for the validation

phase is the same in both versions of the code. The difference

3The write-back phase includes the release of the acquired locks from the
lock acquisition phase.

tx_read(addr) {

  <write_set_query>

  load_tag_and_value(addr, &version, &value);

  <read_set_update>

  return value; }

Cache lines GTags

value

CPU

Registers

(1)

(1)

Cache

version

(1)

Fig. 4. Tx_read in TagTM.

Cache lines

value

CPU

Registers

Cache

version

(1)

(2)

(1)

(2)

tx_commit() {

  try_acquire_locks();

  tx_validate();

  for (ws_entry in write_set) {

    *ws_entry.addr = ws_entry.value;  // update memory

    *ws_entry.lock_addr = new_version;  // lock release }}

Fig. 5. Tx_commit in lazy versioning STM.

exists in the write-back phase. In this phase, the original

tx_commit operation without GTags has to execute two

memory writes per write-set entry, one for the memory update

and other for the lock release operation4. tx_commit with

GTags can execute just one store tag and value instruction

that will update the memory reference and will release the

lock. Because the tx_commit operation is on the critical

path in STMs, this has positive impact to the application’s

performance. In Section IV, we show the reduction in the

number of cycles for the write-back phase.

F. Modifying remaining transactional operations

The implementation of tx_validate, tx_write, and

tx_abort operations is the same in TinySTM and in TagTM,

with one small difference. In original TinySTM, these oper-

ations access the locks from the SAL, and in TagTM, these

operations access the locks stored in the cache line tags. GTags

improve the performance of tx_validate operation indi-

rectly, by having better cache locality than original TinySTM.

The improvement is attributed to better use of the cache line

associativity because the locks stored in tags do not compete

with data for the associativity (Figure 9). In Section IV, we

show the reduction in a number of executed cycles the for the

validation phase.

4The release also updates the version number.



Feature Description

Processors 1 to 32 DECAlpha cores, in-order, single-issue

L1 Cache 64KB, private, 4-way assoc., 64B line, 2-cycle access

Coherence protocol MESI protocol

L2 cache 8MB, shared, 32-way assoc., 64B line, 16-cycle access

Memory 300-cycle off chip access

GTags Every cache line is extended with 32-bit tag.

TABLE II
THE SIMULATION PARAMETERS.

IV. EVALUATION

For the evaluation we use the M5 full system simulator [3].

The bus-based coherency protocol is replaced with directory-

based MESI cache coherence protocol. We use in order

DECAlpha CPU cores extended with the new instructions for

tag manipulation. We extend the cache lines to store tags and

extend the cache coherence protocol to make data and tags

cache coherent. The configuration parameters used for the

simulation are shown on Table II.

Minh et al. created STAMP [4], a state-of-the-art benchmark

suite for evaluating TM systems. We use STAMP to compare

the unmodified TinySTM against TagTM. We use the recom-

mended input parameters for the application in STAMP for

simulation run [4].

A. Transactional operations performance improvements

Figures 7, 8, and 9 show the time spent in memory hierarchy

for the address and version read, the write-back, and the

validation phases in STAMP benchmarks respectively. The

X axis of the graph shows the benchmarks with TinySTM

and TagTM, interleaved. The Y axis depicts the time that

is normalized to TinySTM. The cycles spent for memory

accesses are broken down in three parts for L1, L2, and main

memory accesses. The results are shown for the benchmarks

running with one thread on one CPU, in order to see better

the pure effect of GTags on transactional operations.

Figure 7 suggests that GTags reduce the number of memory

accesses in “address and version read” phase of tx_read

operation because of the improved spatial locality of data and

tags. Vacation and Bayes benchmarks show the biggest time

reduction (up to 41.93% for Vacation-low) because GTags

successfully eliminate the accesses to main memory. The other

applications show a modest improvement of execution time,

which is attributed to the reduction in the number of accesses

to the L2 cache.

Figure 8 suggest that GTags reduce the number of memory

accesses in the write-back phase of tx_commit operation

because of the improved spacial locality of the data and

tags. Almost all the benchmarks show reduction in accesses

to main memory and to L2 caches. This presents a large

performance improvement of 58.96% (geometric mean of all

the applications) for the write-back phase.

Figure 9 suggests that GTags reduce the number of memory

accesses in the “validation” phase of tx_commit operation

because the number of accesses to main memory is greatly

Cache lines GTags

value

CPU

Registers

Cache

version

(1)

(1)

(1)

tx_commit() {

  try_acquire_tags();

  tx_validate();

  for (ws_entry in write_set) {

    // update memory and release lock

    store_tag_and_value(ws_entry.addr, new_version, ws_entry.value); }}

Fig. 6. Tx_commit in TagTM.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

T
in

y
S

tm

G
ta

g
s

T
in

y
S

tm

G
ta

g
s

T
in

y
S

tm

G
ta

g
s

T
in

y
S

tm

G
ta

g
s

T
in

y
S

tm

G
ta

g
s

T
in

y
S

tm

G
ta

g
s

T
in

y
S

tm

G
ta

g
s

T
in

y
S

tm

G
ta

g
s

T
in

y
S

tm

G
ta

g
s

T
in

y
S

tm

G
ta

g
s

Bayes Genome Intruder K-Low K-High Vac-Low Vac-High SSCA2 Yada Labyr.
N

o
rm

a
li

ze
d

 t
im

e
 t

o
 T

in
y
S

tm

tx_read - Time spent at the memory hierarchy L1 L2 Mem

Fig. 7. tx_read - Time spent in memory hierarchy. Time is normalized to
TinySTM.

reduced. The validation routine has to traverse all the locks

that are stored in the transaction’s read-set during the short

time interval which will populate the caches with the locks

from the SAL. This will kick out some of the transactional

data from the caches to the main memory. TagTM does not

exhibit this problem because the locks stored in the tags do

not compete with transactional data for the caches, therefore

GTags effectively increase the associativity of the caches for

transactional applications. The performance benefit of GTags

for the validation is 26.76% for the applications with small

and medium read-sets (geometric mean for Kmeans-high,

Kmeans-low, Vadation-high, and Vacation-low). The benefit

is bigger for the applications with medium and large read-sets

and is 85.55% (geometric mean for the rest of the STAMP

applications).

B. Transaction execution performance improvements

Figure 10 shows the speedup of TagTM over TinySTM for

committed transactions. The X axis shows STAMP applica-

tions running from 1 up to 32 threads. The Y axis shows

the speedup gain provided by GTags. The right most columns

on the graph represent geometric mean of the speedup of

the applications. Three applications from STAMP (Kmenans,

Vacation, and SSCA2) show similar behaviour when running

on different number of CPUs. All of them have more or

less constant performance improvement while the number of

CPUs change (except Kmeans on 32 CPUs). SSCA2 shows

the best speedup (of 52%). This improvement comes from

the fact that SSCA2 has the biggest transactional overhead



0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

T
in

y
S

tm

G
ta

g
s

T
in

y
S

tm

G
ta

g
s

T
in

y
S

tm

G
ta

g
s

T
in

y
S

tm

G
ta

g
s

T
in

y
S

tm

G
ta

g
s

T
in

y
S

tm

G
ta

g
s

T
in

y
S

tm

G
ta

g
s

T
in

y
S

tm

G
ta

g
s

T
in

y
S

tm

G
ta

g
s

T
in

y
S

tm

G
ta

g
s

Bayes Genome Intruder K-Low K-High Vac-Low Vac-High SSCA2 Yada Labyr.

N
o

rm
a

li
ze

d
 t

im
e

 t
o

 T
in

y
S
tm

write_back - Time spent at the memory hierarchy L1 L2 Mem

Fig. 8. write_back - Time spent in memory hierarchy. Time is normalized
to TinySTM.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

T
in

y
S
tm

G
ta

g
s

T
in

y
S
tm

G
ta

g
s

T
in

y
S
tm

G
ta

g
s

T
in

y
S
tm

G
ta

g
s

T
in

y
S
tm

G
ta

g
s

T
in

y
S
tm

G
ta

g
s

T
in

y
S
tm

G
ta

g
s

T
in

y
S
tm

G
ta

g
s

T
in

y
S
tm

G
ta

g
s

T
in

y
S
tm

G
ta

g
s

Bayes Genome Intruder K-Low K-High Vac-Low Vac-High SSCA2 Yada Labyr.

N
o

rm
a

li
ze

d
 t

im
e

 t
o

 T
in

y
S
tm

validate - Time spent at the memory hierarchy L1 L2 Mem

Fig. 9. validate - Time spent in memory hierarchy. Time is normalized
to TinySTM.

of 503.52% (Figure 1). Kmeans (low and high) and Vacation

(low and high) have similar transactional overheads and exhibit

the similar speedup with GTags of about 13.28% (geometric

mean). Intruder has a performance gain of about 17.2% while

running from 1 to 8 threads, and has a performance loss

for 16 and 32 threads. The rest of transactional applications

(Genome, Bayes, Yada, and Labyrinth) have small transac-

tional overhead, and show that the benefit of GTags can be

positive (for Bayes and Yada) or negative (for Labyrinth).

The performance benefit happens when the (transactional) data

and the lock are accessed in transaction. In the applications

with small transaction overhead, the performance loss happens

when the non-transactional data pays the price of fetching tags

that will not be used. This is the one of the reasons why

Labyrinth experiences performance degradation. Overall, we

have an average speedup of 13.05% in committed transaction

execution time while running on 1-32 cores.

C. GTags - L1 cache overhead

We use CACTI 5.3 [14] to evaluate the increase in L1 cache

area caused by adding GTags to the data part of the cache lines

(see Table III). GTags increase the L1 cache area by 6.05%.

This is a small overhead compared to the total cache size,

because GTags utilize the already existing lookup logic.

V. RELATED WORK

Saha et al. proposed HaSTM [13] for improving the per-

formance of STM systems by using additional bits per cache

line. Every 16 bytes of an L1 cache line is protected with

1 bit. HaSTM uses these bits to eliminate redundant logging

��
��
�

��
��
	
�


�
��

�
��

�	
��
��
��
��

�	
��
��
��



��
��
�
�
��
��
�

��
��
�
�
��
�


��
��
�

��
��

��
��
�
�
��

��
�	

��
�
�
�	

��
�

�������

�������

�����

������

������

������

������

������

������

�

�

�

 

��

��

Fig. 10. Percentage speedup of TagTM over TinySTM for committed
transactions

Cache type Regular L1 L1 extended with GTags

Size 64KB 64KB + 8KB for GTags

Cache line size 64 bytes 64 bytes + 8 bytes for GTags

Other 4-way, 1 bank, 45nm 4-way, 1 bank, 45nm

Total area (mm2) 0.841 0.892 (6.05% increase)

TABLE III
CACHE PARAMETERS CALCULATED WITH CACTI 5.3.

and to eliminate validation overhead altogether for transactions

whose transaction records fit in the cache. In the case of

GTags, the tags speed-up the logging by reducing the time

necessary to accesses to global version table.

Ming el al. proposed SigTM [11] that uses hardware sig-

natures to track the read-set and write-set for pending trans-

actions and to perform conflict detection between concurrent

threads. All other transactional functionality, including data

versioning, is implemented in software. However, the biggest

performance benefit of SigTM is the elimination of read-set

logging. GTagTM do not have the problem of false aborts

because the version information stored in tags is exact.

Hammond et al. introduced Transactional Memory Coher-

ence and Consistency (TCC) [7] to execute transactions in

hardware. Their system changes the coherence hardware and

require that all the code executes simple transactions. On the

other hand, GTags requires no changes to existing coherence

protocols and can be used to speedup existing software TM

systems.

Harris et al. proposed Dynamic Filtering (DF) [9], a multi-

purpose architecture support for language runtime systems, to

speedup software TM systems and to reduce the overheads

in language base security systems. DF reduces the metadata

accesses in eager STM systems by reducing unnecessary

transactional logging. GTags reduce the metadata accesses by

reducing the overheads associated with accesses to cache-line

locks/timestamps.

Adl-Tabatabai et al. designed compiler and runtime support

for software TM [1] which is able to reduce the overheads of

STM. Their implementation should benefit from the uses of

GTags because, atomic GTags’ instructions can enable some

further optimizations that would reduce the STM overheads

even more.

Baugh et al. [2] used fine-grained protection mechanism



to isolate transactional data in an implementation of TM

with strong atomicity, and to separate hardware-managed and

software-managed transactional data in hybrid systems. This

approach could be used to extend use of GTags for hardware

HTM systems.

Several other proposals add hardware for fast meta-data

acesses and application monitoring. Zeldovich et al. [17]

implementad Loki, a tagged memory architecture, to enforce

appilcation security policies in hardware. Venkataramani et

al. [15] propose hardware support for memory access monitor-

ing tasks. Chen et al. [6] use hardware extensions to accelerate

metadata accesses.

VI. CONCLUSION AND FUTURE WORK

In this paper we introduce TagTM, a software TM sys-

tem augmented with new hardware mechanism that we call

GTags. GTags are new hardware cache coherent tags used

for fast meta-data access. TagTM use GTags to reduce the

cost associated with accesses to the transactional data and

corresponding metadata. For the evaluation of TagTM, we use

STAMP benchmark suite. In the average case TagTM provide

the speedup of 7-15% (across all STAMP applications), and

in the best case shows up to 52% speedup of committed

transaction execution time (for SSCA2).

ACKNOWLEDGMENT

We would like to thank Nehir Sonmez, Vesna Smiljkovic,

Vladimir Gajinov, and all anonymous reviewers for their

comments and valuable feedback. This work is supported by

the agreement between the Barcelona Supercomputing Center

and Microsoft Research, by the Ministry of Science and

Technology of Spain and the European Union under contracts

TIN2007-60625 and TIN2008-02055-E, and by the European

HiPEAC Network of Excellence.

REFERENCES

[1] A.-R. Adl-Tabatabai, B. T. Lewis, V. Menon, B. R. Murphy, B. Saha,
and T. Shpeisman. Compiler and runtime support for efficient software
transactional memory. SIGPLAN Not., 41:26–37, June 2006.

[2] L. Baugh, N. Neelakantam, and C. Zilles. Using hardware memory pro-
tection to build a high-performance, strongly-atomic hybrid transactional
memory. In Proceedings of the 35th Annual International Symposium

on Computer Architecture, ISCA ’08, pages 115–126, Washington, DC,
USA, 2008. IEEE Computer Society.

[3] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and
S. K. Reinhardt. The m5 simulator: Modeling networked systems. IEEE
Micro, 26:52–60, July 2006.

[4] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP:
Stanford transactional applications for multi-processing. In IISWC ’08:

Proc. 11th IEEE International Symposium on Workload Characteriza-

tion, pages 35–46, September 2008.
[5] C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu, S. Chiras, and

S. Chatterjee. Software transactional memory: Why is it only a research
toy? Queue, 6:46–58, September 2008.

[6] S. Chen, M. Kozuch, T. Strigkos, B. Falsafi, P. B. Gibbons, T. C.
Mowry, V. Ramachandran, O. Ruwase, M. Ryan, and E. Vlachos.
Flexible hardware acceleration for instruction-grain program monitoring.
SIGARCH Comput. Archit. News, 36:377–388, June 2008.

[7] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis,
B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun.
Transactional memory coherence and consistency. In Proceedings of the

31st annual international symposium on Computer architecture, ISCA
’04, pages 102–, Washington, DC, USA, 2004. IEEE Computer Society.

[8] T. Harris, J. Larus, and R. Rajwar. Transactional Memory (Synthesis

Lectures on Computer Architecture). Morgan & Claypool Publishers,
2nd edition, June 2010.

[9] T. Harris, S. Tomic, A. Cristal, and O. Unsal. Dynamic filtering: multi-
purpose architecture support for language runtime systems. SIGARCH

Comput. Archit. News, 38:39–52, March 2010.
[10] M. Herlihy and J. E. B. Moss. Transactional memory: architectural

support for lock-free data structures. SIGARCH Comput. Archit. News,
21:289–300, May 1993.

[11] C. C. Minh, M. Trautmann, J. Chung, A. McDonald, N. Bronson,
J. Casper, C. Kozyrakis, and K. Olukotun. An effective hybrid transac-
tional memory system with strong isolation guarantees. In ISCA ’07:

Proc. 34th International Symposium on Computer architecture, pages
69–80, June 2007.

[12] T. Riegel, P. Felber, and C. Fetzer. Dynamic performance tuning of
word-based software transactional memory. In PPoPP’08: Proc. 13th

ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, pages 237–246, February 2008.
[13] B. Saha, A.-R. Adl-Tabatabai, and Q. Jacobson. Architectural support for

software transactional memory. In MICRO ’06: Proc. 39th IEEE/ACM

International Symposium on Microarchitecture, pages 185–196, Decem-
ber 2006.

[14] P. Shivakumar and N. Jouppi. Cacti 3.0: An integrated cache timing,
power, and area model. Technical report, Technical Report 2001/2,
Compaq Computer Corporation, 2001.

[15] G. Venkataramani, B. Roemer, Y. Solihin, and M. Prvulovic. Mem-
tracker: Efficient and programmable support for memory access monitor-
ing and debugging. In Proceedings of the 2007 IEEE 13th International

Symposium on High Performance Computer Architecture, pages 273–
284, Washington, DC, USA, 2007. IEEE Computer Society.

[16] R. M. Yoo, Y. Ni, A. Welc, B. Saha, A.-R. Adl-Tabatabai, and H.-
H. S. Lee. Kicking the tires of software transactional memory: Why
the going gets tough. In SPAA ’08: Proc. 20th annual symposium on

parallelism in algorithms and architectures, pages 265–274, June 2008.
[17] N. Zeldovich, H. Kannan, M. Dalton, and C. Kozyrakis. Hardware

enforcement of application security policies using tagged memory. In
Proceedings of the 8th USENIX conference on Operating systems design

and implementation, OSDI’08, pages 225–240, Berkeley, CA, USA,
2008. USENIX Association.

[18] F. Zyulkyarov, S. Stipic, T. Harris, O. S. Unsal, A. Cristal, I. Hur,
and M. Valero. Discovering and understanding performance bottlenecks
in transactional applications. In Proceedings of the 19th international

conference on Parallel architectures and compilation techniques, PACT
’10, pages 285–294, New York, NY, USA, 2010. ACM.


