
A cycle-approximate, mixed-ISA simulator for the
KAHRISMA architecture

Timo Stripf, Ralf Koenig, Juergen Becker
Karlsruhe Institute of Technology, Karlsruhe, Germany

{stripf, ralf.koenig, becker}@kit.edu

Abstract—Processor architectures that are capable to reconfig-
ure their instruction set and instruction format dynamically at
run time offer a new flexibility exploiting instruction level par-
allelism vs. thread level parallelism. Based on the characteristics
of an application or thread the instruction set architecture (ISA)
can be adapted to increase performance or reduce resource/power
consumption. To benefit from this run-time flexibility automatic
selection of an appropriate ISA for each function of a given ap-
plication is envisioned. This demands a cycle-accurate simulator
that is capable of measuring the performance characteristics of
an ISA dependent on the target application. However, simulation
speed of a cycle-accurate simulator of our reconfigurable VLIW-
like processor instances featuring dynamic operation execution
would become relatively slow due to the superscalar-like mi-
croarchitecture. Within this paper we address this problem by
presenting our cycle-approximate simulator approach containing
a heuristic dynamic operation execution and memory model that
provides a good trade-off between performance and accuracy.
Additionally, the simulator features measurement of instruction
level parallelism (ILP) that could be theoretically exploited by
VLIW processor instances running on our architecture. The
theoretical ILP could be used as an indicator for the ISA selection
process without the need to simulate any combination of the
different ISAs and applications.

I. INTRODUCTION

Within the KAHRISMA project [1] we research a novel multi-
grained hypermorph reconfigurable processor architecture. Other
reconfigurable processor architectures typically focus on dynamic
extension of their instruction set (the set of instructions the
processor is capable to execute) by fine-grained reconfigurable
logic while relying on a RISC instruction encoding [2]. In
contrast to that, KAHRISMA additionally features dynamical
reconfiguration of the instruction format (switch between RISC
and n-issue VLIW) to execute a configurable number of statically-
scheduled instructions in parallel. Thereby, multiple processor
instances executing different instruction formats may co-exists
in parallel. Each instruction format requires thereby a different
amount of resources and also provides different peak performance
characteristics. This new degree of freedom leads to the decision
problem which application should run on which instruction format
to efficiently utilize the available reconfigurable hardware fabrics.

One major problem of a multiplicity of reconfigurable ar-
chitectures is their programmability. That often arises from the
methodology to first design the system from a hardware centric
view without addressing the programmability of the developed
architecture. In contrast, in our research the programmability
plays an important role. It is one of our major design goals
to offer a well-programmable reconfigurable architecture by the
widely-used, high-level, general-purpose programming language
C/C++ while improving application execution and architecture
efficiency. To achieve this, a compiler-based software toolchain
is designed and implemented in parallel to hardware architecture
development [3]. The requirements of the software framework are
respected in architectural design decisions from an early stage on
to maintain programmability of the hardware architecture. The

978-3-9810801-8-6/DATE12/ c©2012 EDAA

software toolchain targets mixed-ISA processors and is therefore
based on an Architecture Description Language (ADL).

In contrast to a processor architecture with a fixed Instruction
Set Architecture (ISA), the flexibility – introduced by reconfig-
urability of the instruction set and instruction format – raises
the problem of selecting an appropriate ISA e.g. on function
granularity of a given application while taking reconfiguration
overhead, resource consumption, energy consumption, and perfor-
mance into account. For function-based ISA selection we require
detailed information about the performance characteristics of the
application running on each ISA. Thereby, the achievable quality
of a solution is directly related to the accuracy of performance
values. Therefore, we require a cycle-accurate simulator in order
to measure the performance of the ISAs for a given application.
However, it is very time consuming to simulate our processor
pipeline cycle-accurate, since our microarchitecture utilizes the
Dynamic Operation Execution (DOE) [4] model and thus has
a relatively complex pipeline (compared to RISC or VLIW
processors).

In this paper we present our cycle-approximate simulator
containing a simplified dynamic operation execution model that
provides a good trade-off between performance and accuracy.
Additionally, the simulator features measurement of Instruction
Level Parallelism (ILP) that could be theoretically exploited by
VLIW processor instances on our architecture. The theoretical
ILP could be used as an indicator for the ISA selection process
without the need to simulate any combination of the different
ISAs and applications. The rest of this paper is organized as
follows: Section II gives an overview of state-of-the-art sim-
ulator techniques. Section III describes the simulator-relevant
aspects of the KAHRISMA microarchitecture in detail. A general
overview of our software framework is given in Section IV.
Section V presents the components of our cycle-approximate
simulator while in Section VI our cycle-approximate algorithms
are explained. In Section VII our results are presented. Finally,
Section VIII concludes this paper.

II. OVERVIEW OF STATE-OF-THE-ART

In general, there exist two models for processor architecture
simulation: Cycle-Accurate Simulator (CAS) and Instruction Set
Simulator (ISS). The ISS simulates only the behavior of an
ISA while the CAS provides a cycle-accurate simulation of
a microarchitecture realizing an ISA. CASs are slower than
ISSs since they must additionally ensure that all operations are
executed at the correct time while taking branch prediction, caches
misses, fetches, pipeline stalls, and many other microarchitectural
aspects into account. They are often used to model and benchmark
new microprocessors without actually building a physical chip.
Thereby, the SystemC [5] language is widely used for structural
modeling of the microarchitecture [6].

The majority of functional ISSs rely on the following tech-
niques: (1) interpretation [7], (2) static compilation [8], [9], and
(3) dynamic compilation [10]. Interpretation fetches, decodes, and
executes instructions within the simulation loop. Execution is of-
ten realized by a large switch statement or indirect function calls.



Instruction Fetch & Align Tiles

Instruction Analyze & Dispatch Tiles

EDPE Array

Instruction Cache Tiles

EDPE

EDPE

EDPE

RISC ISA 2-issue VLIW ISA2-issue VLIW ISA 6-issue VLIW ISA

In
st
ru
ct
io
n
pr
e-

pr
oc
es
si
ng

EDPE

EDPE

EDPE

EDPE

EDPE

EDPE

EDPE

EDPE

EDPE

EDPE

EDPE

EDPE

EDPE

EDPE

EDPE

EDPE

EDPE

EDPE

…...

…...

…...

…...

…...

Fig. 1. Realization of Different ISA Configurations for the KAHRISMA
Architecture

Decode and execute are the two major performance bottlenecks
within interpretation-based simulators. The decoding costs can
be significantly reduced by using instruction caching techniques
[11]. In contrast, static and dynamic compilation translates the
instructions of the simulated architecture into instructions of
the host architecture. Static compilation performs the translation
offline before simulation while dynamic compilation performs
it during simulation. Static and dynamic compilation simulate
on basic block level and thus offers the highest simulation
speed but provide less information. In [10] dynamic compilation
techniques exploiting just in-time compilation facilities of the
LLVM compiler framework are presented. The authors show that
cycle-accurate simulation of scalar RISC pipelines is possible
with up to 800 MIPS. However, the model is not applicable to any
superscalar-like processor pipeline. Furthermore, the processor
cache is not modeled in detail. So the cycle-accuracy of the
simulator is limited to processors without caches and constant
memory access time using a simple RISC pipeline.

Besides CAS and ISS, there exist cycle-approximate simulators
that try to estimate the cycle counts of the target architecture
in order to provide a good trade-off between performance and
accuracy. In [12] a prior training and regression based perfor-
mance prediction technique based on high-level counters (e.g.
total number of different types of instructions and cache reads
and misses) is introduced. It is shown that the cycle counts of
an ARM v5 processor could be estimated with an average error
of 5.8% with a simulation speed of an ISS and an extra training
phase. However, the training stage can take several hours and is
thus impractical since the training stage would have to be repeated
for every configuration of our architecture.

III. THE KAHRISMA PROCESSOR ARCHITECTURE

In the following the flexibility of the KAHRISMA architecture
by reconfiguration of the ISA is presented. One major feature
of the KAHRISMA architecture is the execution of multiple
threads with different ISAs. In Figure 1 a global overview
of the architecture is shown. On the bottom it consists of an
array of EDPEs (Encapsulated Datapath Elements). An EDPE
performs all required operations and consists of a local register
file, Arithmetic Logic Unit (ALU), and a Synchronization Unit
to synchronize neighboring EDPEs. On top of the figure the
instruction preprocessing tiles are shown. They consist of three
groups of separated instruction caches, fetch & align tiles, and
instruction analyze & dispatch tiles.

The distributed tiles represent pipeline stages of the architec-
ture. They are flexibly combined by reconfiguring the tiles and the
communication network in between. In this way, the processor can
instantiate different hardware threads as shown in Figure 1. The

ADLApplication 
Source Code

Compiler

ISS 
Simulator

Executable
Assembler

Assembly

GNU
Linker

Binary Utilities

TargetGen

Fig. 2. Overview of the ADL-based software framework

first thread executes a RISC ISA with a minimum of required
resources. The third hardware thread executes a 6-issue VLIW
ISA and can execute 6 operations in parallel by the six assigned
EDPEs.

During runtime the processor can dynamically instantiate new
hardware threads as long as the required resources are available. It
is also possible to change the ISA of one hardware thread during
execution. That offers the possibility to adapt the resource con-
sumption of one hardware thread to the individual requirements
of the executed thread or application.

The KAHRISMA architecture uses the Dynamic Operation
Execution (DOE) [4] model, i.e. all operations of one instruction
need not be issued at the same time. Instead, the execution of
one operation can start immediately if the data dependencies are
fulfilled and all required resources are available. All operations
of one slot are issued sequentially to the functional units. The
individual slots can drift among each other so that the operations
between slots (all within one instruction) can be executed out
of order. While the ISA is comparable to VLIW processors,
the microarchitecture is related to superscalar architectures with
dynamic scheduling but without a dispatcher. A dispatcher is
not necessary since a slot within the RSIW-instruction already
specifies where the operation is executed.

IV. ADL-BASED SOFTWARE FRAMEWORK

Figure 2 gives an overview of the ADL-based software frame-
work. The software framework uses an ADL description and the
application’s C/C++ source code as input. The ADL is processed
by our TargetGen utility which generates source code fragments
of the compiler, assembler, and simulator in order to retarget
the compiler framework to any architecture described within the
ADL. The ADL description contains specifications of all possible
processor configurations and their ISAs in parallel [3].

Our retargetable compiler translates C/C++ source code into
target-dependent assembly files. It is based on the LLVM compiler
infrastructure. It allows developing mixed-ISA applications by
three features. (1) It is capable to switch ISA during code
generation process to target any ISA specified within the ADL
description. (2) It outputs a special assembly pseudo directive
to notice the assembler about the used ISA. (3) It prefixes the
function name symbols by the target ISA identifier to enable
mixed-ISA applications compilation containing multiple imple-
mentations of the same function, each using a different ISA.

The binary utilities – consisting of an assembler and linker
– translate the assembly files into an executable file for the
reconfigurable architecture. In a first step, the files are assembled
into object files. Afterwards all object files are linked together
into the application binary. Both, the object files and application
binary, are stored in standard Executable and Linkable Format
(ELF) format [13]. The assembler supports mixed-ISA assembly
files. During assembling the ISA can be switched using a special
assembly pseudo directive.



ISS Simulator

Detect
Instruction
(Cached)

Decode
Instruction
(Cached)

Execute
Instruction

Simulation Loop

Cycle
Approximation

switches

Simulation
Function

calls

generates

Simulation
FunctionSimulation
Function

ADL

Instruction
SetInstruction
SetInstruction
Set

uses

Memory

accesses

TargetGen

Trace
Generation

Fig. 3. Cycle-Approximate Simulator Design

The Instruction Set Simulator (ISS) is a cycle-approximate
simulator that emulates all ISAs as specified within the ADL.
As input data it uses the application’s executable file generated
by the binary utilities. The components of the simulator are
described in detail in Section V. The ISS pursues several goals:
(1) It is used to validate the compiler and binary utilities in
combination with the simulated application. Only if the compiler,
assembler, linker, and simulation are working correctly for a given
(correct) application the simulator is able to finalize application
execution and provide valid results. (2) The ISS gives cycle-
approximate performance results in combination with dynamic
program analysis, e.g. profiling. This is in our case especially
important for the selection of appropriate ISAs for an application
on function granularity. (3) The ISS is capable of trace file
generation. The trace file contains the exact behavior of the
processor for each cycle during simulation of an application.
It is used to validate different implementations of the ISA, e.g.
our Register Transfer Level (RTL) hardware implementation. The
trace file can also serve as stimuli values for simulations of
partial implementations of the ISA and is therefore very useful for
early evaluation of hardware components. (4) It is used for error
detections within applications. During compiler development it
frequently happens that malicious code is generated. In that
case the simulator provides mapping of instruction addresses to
assembly and source code lines, an instruction pointer history,
and trace file information.

V. CYCLE-APPROXIMATE SIMULATOR

The simulator is an essential part of the complete frame-
work. It is an mixed-ISA ISS that emulates the behavior of
multiple ISAs and optionally approximates the cycle count of
the KAHRISMA microarchitecture. We used the interpretation
technique to realize our simulator since the cycle-approximation
calculation is performed for each simulated instruction. Static or
dynamic compilation would not make sense in that case since
their performance gain results from operating on basic block
level. Figure 3 shows the design of our simulator. Based on the
ADL description, the TargetGen utility generates fragments of
the simulator’s source code, especially a register table, multiple
operation tables, and simulation functions. To support multiple
ISAs in parallel, each supported ISA has its own operation table
and only the active operation table is used during instruction
detection. The operation table contains a list of all operations
of an ISA. Each operation within an operation table contains its

name, size, fields, implicit registers, and pointer to the simulation
function. The fields represent the organization of the operation’s
instruction word, e.g. the encoding and location of the opcode
or destination/source registers. The implicit registers are registers
that are read or written by the operation without explicit encoding
with a field of the instruction word, e.g. each jump operation
implicitly writes the Instruction Pointer (IP). For each operation
a simulation function exists that is called to execute the operation.
To automatically generate the simulation function, the ADL
description contains for each operation a simulation source code
fragment in C++.

The simulator gets as input the compiled executable in ELF
format. The ELF file is loaded into the simulated memory of the
processor. The start address is extracted and used to initialize
the IP. Within the simulation loop, first the instruction addressed
by the IP is detected by checking the constant fields for each
operation of the current active ISA (e.g. opcode field). The
detected operation is decoded by extracting all fields of the
operation. These are stored into a decode structure to provide fast
access to the information during execution. The decoded instruc-
tion is executed by calling the simulation function generated by
TargetGen. Thereby, parts of decode structure are directly passed
to the simulation function.

After an instruction is executed optional tasks are performed.
These optional tasks include the cycle approximation (see section
VI) and trace file generation. A trace file tracks the behavior of
the simulated processor. For each executed operation the cycle
number, opcode, input/output register numbers and values, and
immediate values are appended to the trace file. The trace file is
used to validate our hardware implementation.

A. Decode Cache
The operation detection and decoding is a major performance

bottleneck within interpretation-based simulators. To compensate
that, all detected and decoded instructions are stored in a cache
tagged by the instruction address. Thereby, each executed instruc-
tion is only detected and decoded once. Due to the principle
of program locality the number of decoded instructions can
be dramatically reduced compared to the number of executed
instructions. In that way the processing time spent for detection
and decoding becomes insignificant. To realize our decode cache
we use the unordered map container from the boost library [14].
It implements a hash map and has an average time complexity
close to O(1) to lookup an entry.

Further, we speed up the cache entry lookup by using in-
struction prediction. The idea is that for non-branch instructions
the following instruction is always identical. Also for branch
instructions the following instruction is often the same. Therefore,
we store within each decode structure the IP and decode structure
pointer of the following instruction. To get the decode structure
of the current instruction we first compare the current IP to the
predicted IP of the previous instruction. If both match, we will use
the predicted decode structure pointer. Otherwise, we perform a
cache lookup and update the prediction IP and decode structure of
the previous instruction. This mechanism is comparable to a 1 bit
branch predictor in hardware and avoids unnecessary expensive
cache lookups within our simulation loop.

B. Simulation of Parallel Operations
To execute RISC instructions consisting of one operation we

can call the execution function provided by TargetGen. The
execution of parallel operation within VLIW instructions is more
complex. For each operation one simulation function exists.
It is important that the registers of all parallel operations are
loaded before any operation writes back its results. So it is not
possible to simple call the simulation functions sequentially. One



solution is to generate for each possible combination of operations
another simulation function. However, in that case the number of
simulation functions would grow exponentially with the number
of parallel operations within one VLIW instruction. Instead, in
our solution only one simulation function per operation exists
and it is called recursively. After the operation is performed and
before the registers are written, the simulation function calls the
simulation function of the next parallel operation. In that case,
first all operations are calculated and their results are stored within
local variable on the stack. Afterwards the results are written into
the register file.

C. Debugging
For debugging purpose and statistics generation the simulator

can map an instruction address to the corresponding assembler
file line number, C/C++ source file line number, or function
name. Therefore, the assembler stores the assembler file mapping
into a custom data section within the ELF file. Additionally, the
compiler can generate debugging information into the assembly
file. The debug information is in standard DWARF format and
a DWARF reader within the simulator extracts the source line
numbers. Within the ELF file the start address and end address
of each function is stored.

D. Mixed-ISA Support
To address the reconfigurability of our processor architecture,

the simulator can switch the ISA during runtime. We extended
the state of the processor (that contains the register file and
memory) to also include the currently active ISA. Each ISA is
identified by a unique number that is provided by the ADL. On
startup the initial ISA must match the ISA of the entry code
of the executable. Therefore, the initial ISA can optionally be
specified per command line parameter. Otherwise, the default
ISA – as specified in the ADL – is used. We added a new
“SWITCHTARGET” instruction within the ADL. This instruction
accepts one immediate as operand and changes the ISA to
the given ISA identification number. The simulation code – as
specified within the ADL – calls a simulator specific function that
updates the active ISA state of the simulator. The next instruction
is then detected and decoded using the new ISA. Therefore,
for each ISA specified within the ADL a separate opcode table
and simulation functions is provided. During instruction detection
only the opcode table of the currently active ISA is used.

E. C Standard Library Emulation
Input/output functions are one critical point when developing

mixed-ISA applications and testing the overall framework. In
general, they are provided by the C library implementation. In
contrast, we directly provide the functionality of required C
standard library functions within our simulator. Therefore, we
embedded a special simulation operation into the ADL and the
simulator. The library function is encoded as immediate within
the operation. Each library function is made visible to the linker
by providing an automatically generated assembly file containing
a small function body for each library function that only exe-
cutes the simulation operation and returns afterwards. Within the
simulator an emulated library function has direct access to the
register file and memory. It reads the input parameters from the
registers and stack according to the calling convention, executes
the corresponding C library function natively, and writes the result
back to the registers.

The native execution of C library functions allows the fast
retargetability of our framework since we must not recompile a
complete C library in order to support a new ISA or to reflect any
changes to a given ISA. Instead, we can execute the simulation
operation from any ISA that is currently executed within the

simulation. However, the native execution has the disadvantage
that the cycles required for these functions are not counted.
Therefore, we support to replace any native C library function
with real implementations on the simulated ISA.

VI. CYCLE-APPROXIMATION MODELS

Besides functional application execution, the simulator sup-
ports several cycle models to approximate the application ex-
ecution time on the microarchitecture. In contrast to a cycle-
accurate simulator, we do not model the exact KAHRISMA
microarchitecture within our simulator. Instead, we approximate
the cycles based on a heuristic model in order to provide a trade-
off between accuracy and simulation speed. At the moment we
provide three cycle models that are explained in the following
sections: Instruction-Level Parallelism (ILP), Atomic Instruction
Execution (AIE), and Dynamic Operation Execution (DOE).

A. Instruction-Level Parallelism
The ILP cycle model performs a fast theoretical ILP measure-

ment that calculates the theoretical upper limit for operations
per cycle that could be achieved by our architecture with un-
limited resources. It predicts the performance of a KAHRISMA
VLIW processor instance with unlimited number of operations
in parallel, unlimited number of renaming registers, and an ideal
memory architecture with three cycles delay (the delay of our
L1 cache) and unlimited number of parallel memory accesses. In
such a theoretical architecture the parallelism is limited by true
data dependencies. As input we simulate a RISC ISA. The RISC
instructions are executed by the simulator in the sequence given
by the compiler. However, such a theoretical architecture would
allow to execute all parallelizable operations with an instructions
as early as possible. To mimic that we calculate an individual
start and completion cycle for each RISC instruction.

For each register we store the cycle of its last write access that
is given by the completion cycle of the last instruction that wrote
the register. The instruction’s start cycle is dependent on its source
registers. The start cycle becomes the maximum write cycle of
all source registers. The instruction’s completion cycle is then
given by its start cycle plus its delay. On VLIW processors only
the operations until the next branch instruction can be scheduled
in parallel. So the start cycle must be additionally higher than
the completion cycle of the last branch instruction. For memory
instructions we use a pessimistic model that assumes memory
operations are dependent on each other. A load/store instruction
is always dependent on the last store instruction and can therefore
be executed earliest on the start cycle of store instruction. This
reflects the optimization potential of our compiler since we do not
have an alias analysis and use at the moment the same pessimistic
model for scheduling.

B. Atomic Instruction Execution
Within the atomic instruction execution model we assume that

all operations of an instruction are issued in the same clock
cycle(s). The following instruction can only be issued if all
operations of the previous instruction finished execution. Within
our simulator we calculate the delay of one instruction from the
maximum delay of its operations.

C. Dynamic Operation Execution
The DOE cycle model approximates the performances of our

KAHRISMA architecture (see Section III). In contrast to the AIE
model, each operation of one instruction need not be issued at
the same clock cycle. Instead, the slots of the VLIW instructions
may drift among each other. An operation within a slot is issued
if the previous operation within the same slot has been issued and
the true data dependencies of the input registers are fulfilled.



Within our simulator we model the true data dependencies of
DOE identically to the ILP model. For each register the write
cycle is stored. For one operation the earliest start clock cycle
can be calculated using the maximum of the write cycles of all
source registers. Additionally, we store for each slot the start cycle
of the last operation. Within one slot all operations must be issued
in their order. Thus, the start cycle of one operation must be at
least the start cycle of the last operation within the slot plus one.
The one is added to ensure that only one operation is issued per
slot and clock cycle.

With this simple model we can approximate the performance
of our KAHRISMA architecture without simulating the pipeline
of the microarchitecture in detail. The model is heuristic for
three reasons: (1) The resource constraints are not considered,
e.g. a multiplication may be shared between two slots within our
architecture. (2) The drift between the issue slots is limited to a
maximum value within our hardware to enable precise interrupts
but it is not limited within the simulator. (3) The memory
operations are executed within the simulator in the order given
by the program and not in the order issued within the hardware.

D. Memory Approximation
Within our simulator we approximate the delay of each memory

access. Thereby, the delay approximation is performed in order
of the instruction stream executed by our behavioral model and
not in the order as executed in hardware. To approximate the
delay, we modeled a memory hierarchy consisting of three types
of modules: caches, connection limits, and main memory. Each
module has the same interface containing a function to calculate
the completion cycle of a memory access. Within the cache and
connection limit modules a pointer to submodule is stored that
follows in the memory hierarchy. During delay calculation the
function of the submodule is called, e.g. to pass the memory
access to the next hierarchy in case of a memory miss. During
DOE and AIE cycle mode calculation, the memory delay cal-
culation starts by calling the function of the first module. The
memory address, access type (read or write), slot, and start cycle
are given as input parameters to the delay function. The function
returns the completion cycle of the memory access.

The simplest module is the memory module whereas the
memory access delay is configurable. It calculates the completion
cycle by adding the fixed delay to the start cycle. The cache
module emulates a n-way set associative cache with write-back
write policy and least recently used replacement policy. The line
size, associativity, cache size, and access delay are configurable.
Within the delay function the current cycle is initialized by the
start cycle plus the access delay. If the cache contains the memory
address the function immediately returns. Otherwise, the access
to the memory address is passed to the next submodule (e.g. a
second cache). The current cycle is used as start cycle for the
subaccess and the calculated completion cycle becomes the new
current cycle. The same procedure is performed a second time if a
write-back is required. After the subaccess the data must be stored
inside the cache, so the cache delay is added again to the current
cycle. At the end the current cycle is returned. Additionally, since
the delay function can be called out of order, we store within each
cache line the cycle the cache line was written. The completion
cycle in case of a cache hit is the maximum of the current cycle
and the write cycle of the cache line.

The cache module can calculate the delay of a cache access but
the resource constraints of the cache are not modeled. A cache
can perform only a limited number of accesses at the same time.
This resource limit is modeled using the connection limit module.
It can be configured by the maximum number of access ports
and is typically placed before a cache or memory module. The
connection limit module checks and stores for each start cycle

if a port is available within the start cycle. Otherwise, the start
cycle is increased until a free cycle has been found. Afterwards,
the submodule is called using the new start cycle. The same
mechanism is applied to the completion cycle that is returned
from the submodule.

VII. RESULTS

We used our framework to compile and simulate several
applications using the cycle models introduced in Section VI.
We will first give an overview of the simulator performance
and provide afterwards results obtained from the simulation. We
run the simulator on an Intel Xeon X5680 CPU at 3.33 GHz
pinned to one core. We compiled the simulator with gcc and -O3
optimization.

For memory approximation we used the three modules in-
troduced in Section VI-D to model a three layered memory
hierarchy consisting of a L1 cache (2 KiB, 4-way, 3 cycles
delay), L2 cache (256 KiB, 4-way, 6 cycles delay), and main
memory (18 cycles delay). In front of the L1 cache we placed a
limit connection module with one port to limit the L1 memory
access to one access per cycle. For result generation we used a
set of applications comprising the JPEG encoder/decoder (used
from the MiBench), a fixed-point Fast Fourier Transform (FFT)
implementation, a Quicksort sorting algorithm, a fully-unrolled
Advanced Encryption Standard (AES) implementation, and a
4x4 integer Discrete Cosine Transform (DCT) approximation as
used in H.264. All applications were compiled with maximum
performance optimization.

A. Simulator Performance

We used the cjpeg application compiled for a KAHRISMA
RISC processor instance to measure the performance of our
simulator. First of all, we analyzed the impact of the detection and
decoding cache as well as the instruction prediction as described
in Section V-A. Without cache we achieved a poor performance
of 0.177 Million Instructions per Second (MIPS). By activating
the cache we could avoid 99.991% of detected and decoded
instructions and improve our performance to 16.7 MIPS. By
activating the instruction prediction we could avoid 99.2% of the
hash table lookups and speedup our simulation to 29.5 MIPS. If
we ignore the overhead for the instruction prediction (which is
one or two memory accesses and a comparison), we are able to
calculate the execution time per instruction (by solving a system
of linear equations) of the simulator components Execute, Cache
Access, and Detect & Decode as seen in Table I.

Simulator Components Average Execution Time per Instruction
Execute (1 Operation) 33.2ns
Cache Access 26.0ns
Detect & Decode 5602.0ns
ILP 21.5ns
AIP (including memory) 19.7ns
DOE (including memory) 32.3ns
Memory Model 9.5ns

TABLE I
SIMULATOR PERFORMANCE

If we activate our cycle approximation the performance of
the simulator decreases. For ILP measurement we still reach
18.3 MIPS, for AIE 18.9 MIPS, and for DOE 15.3 MIPS. We
calculated the execution time of the three cycle approximation
models (see Table I). We further measured the impact of the
memory model that is active during AIE and DOE approximation.
Surprisingly, the memory model requires only 9.5ns and is thus
comparable fast although 24.6% of all instructions access the
memory.



B. Instruction-Level Parallelism
To evaluate the ILP cycle model described in Section VI-A,

we compared the ILP to real results obtained from different
VLIW processor instances with different issue widths: RISC (1-
issue VLIW), 2, 4, 6, and 8-issue VLIW. The results of this
comparison are shown in Figure 4. From our five applications
the DCT and AES offer a high ILP while FFT, jpeg compres-
sion/decompression and Quicksort offer only a small ILP. For
FFT the low ILP is remarkable since the Fourier transform is
in general a very dataflow-dominant algorithm and therefore one
would expect a higher ILP. However, the FFT implementation in
our case uses a recursive approach which limits the parallelism by
executing many functions consisting of small basic blocks. Figure
VI-A shows that the ILP cycle model provides a good estimation
of the available KAHRISMA-exploitable parallelism within an
application. The AES benchmark is here an exception since the
8-issue VLIW processor instance can only utilize a fraction of
the available ILP compared to DCT which only provides a little
more ILP. This results from the larger working set of our AES
algorithm that does not fit into the L1 cache and therefore causes
14% L1 cache misses. The L1 cache misses are not modeled
within our ILP measurement.

0

1

2

3

4

5

6

7

8

DCT AES FFT CJPEG DJPEG Quicksort

O
pe

ra
tio

ns
 P

er
 C

yc
le

 

RISC VLIW2 VLIW4 VLIW6 VLIW8 ILP

Fig. 4. ILP Measurement Compared to Several Configurations

C. Dynamic Operation Execution
The DOE cycle model approximates the cycle count required

by the real hardware as accurate as possible. Therefore, we
compared the results from the RTL hardware simulation against
the results obtained from our cycle-approximate simulator. In
order to filter errors resulting from branch misprediction, we rely
on a perfect branch prediction for both simulators. We used the
DCT application for comparison since it provides the highest
parallelism. Table II shows the cycles required to execute the DCT
compiled for different issue widths from the RTL simulation and
the cycle-approximation simulation. The DOE model including
the memory model is capable to approximate the required cycle
with an error of up to 2.8%. The RTL simulator requires 8 ms
per instruction, so our simulator is roughly 100, 000 times faster
while providing nearly the same cycle counts.

Configuration Hardware Approximation Error
RISC 21768 22062 1.4%
VLIW2 14111 13922 1.4%
VLIW4 9774 9878 1.1%
VLIW8 7774 7992 2.8%

TABLE II
SIMULATOR ACCURACY OF DYNAMIC OPERATION EXECUTION

VIII. CONCLUSION AND FUTURE WORK

Within this paper we presented a cycle-approximate, mixed-
ISA, interpretation-based simulator for reconfigurable processor
instances of our KAHRISMA architecture. The simulator esti-
mates the cycle counts of various VLIW processor instances (each

with a different ISA) utilizing the Dynamic Operation Execution
(DOE) model. DOE is characterized by dynamic issuing of
operations within VLIW-instructions once true data dependencies
of the operation are fulfilled. This would require a complex
pipeline design within a corresponding cycle-accurate simulator.
Instead, we provided a heuristic, approximate cycle model for
DOE in combination with a memory delay approximation. The
memory model supports handling of out of order memory ac-
cesses while being called in order. We were able to show that
the model provides a good trade-off between performance and
accuracy by integrating it into our interpretation-based instruction
set simulator. We achieved a maximum accuracy loss of 2.8% at
a simulation speed of 15 MIPS.

Additionally, the simulator features measurement of upper
bound of Instruction-Level Parallelism (ILP) exploitable by
VLIW processor instances using infinite number of resources of
our architecture. The theoretical ILP could be used as an indicator
for the ISA selection process without the need to simulate any
combination of the different ISAs and applications. Both cycle
models, the DOE and ILP, could be used to select an appropriate
ISA for each function of a given application. In future we will use
the cycle-approximate simulator as basis to address the problem
of selecting an appropriate ISA e.g. on function granularity of a
given application while taking reconfiguration overhead, resource
consumption, energy consumption, and performance into account.
Therefore, we plan to integrate cycle-approximation models for
branch misprediction into our simulator.

ACKNOWLEDGMENT

We thank the German Research Foundation (DFG) for funding
this work within the KAHRISMA project.

REFERENCES

[1] R. Koenig, L. Bauer, T. Stripf, M. Shafique, W. Ahmed, J. Becker, and
J. Henkel, “Kahrisma: A novel hypermorphic reconfigurable-instruction-
set multi-grained-array architecture,” in Design, Automation Test in
Europe Conference Exhibition (DATE), 2010, 8-12 2010, pp. 819 –824.

[2] L. Bauer, M. Shafique, S. Kramer, and J. Henkel, “RISPP: Rotating
Instruction Set Processing Platform,” in DAC’07: Proceedings of the
44th annual Conference on Design Automation, 2007, pp. 791–796.

[3] T. Stripf, R. Koenig, and J. Becker, “A Novel ADL-based Compiler-
Centric Software Framework for Reconfigurable Mixed-ISA Proces-
sors,” in Embedded Computer Systems (SAMOS), 2011 International
Conference on, july 2011, pp. 157 –164.

[4] R. Koenig, T. Stripf, J. Heisswolf, and J. Becker, “A scalable microar-
chitecture design that enables dynamic code execution for variable-issue
clustered processors,” in Proc. of the 25th IEEE International Parallel
& Distr. Proc. Symp., Workshops and Phd Forum, 2011.

[5] “Open systemc initiative,” http://www.systemc.org/, 2006.
[6] Yen-Ju Lu et al., “Microprocessor modeling and simulation with sys-

temc,” in VLSI Design, Automation and Test, 2007. VLSI-DAT 2007.
International Symposium on, april 2007, pp. 1 –4.

[7] J. Lee, J. Kim, C. Jang, S. Kim, B. Egger, K. Kim, and S. Han, “Facsim:
a fast and cycle-accurate architecture simulator for embedded systems,”
SIGPLAN Not., vol. 43, pp. 89–100, June 2008.

[8] C. Mills et al., “Compiled instruction set simulation,” Software: Practice
and Experience, vol. 21, no. 8, pp. 877–889, 1991.

[9] V. Zivojnovic et al., “Supersim - a new technique for simulation of
programmable dsp architectures,” 1995.

[10] F. Brandner et al., “Fast and accurate simulation using the llvm compiler
framework,” in 1st Workshop on Rapid Simulation and Performance
Evaluation: Methods and Tools (RAPIDO), Paphos, January 2009.

[11] M. Lv, Q. Deng, N. Guan, Y. Xie, and G. Yu, “Armiss: An instruction
set simulator for the arm architecture,” Embedded Software and Systems,
Second International Conference on, vol. 0, pp. 548–555, 2008.

[12] B. Franke, “Fast cycle-approximate instruction set simulation,” in Proc.
of the 11th intl. workshop on SW & compilers for embedded systems,
ser. SCOPES ’08. New York, NY, USA: ACM, 2008, pp. 69–78.

[13] TIS Committee, “Tool Interface Standard (TIS) Executable and Linking
Format (ELF) Specification Version 1.2,” http://refspecs.freestandards.
org/elf/elf.pdf.

[14] “Boost c++ libraries,” http://www.boost.org.


