advance programme

STE

Design, Automation & Test in Europe

www,date-conference.com

SPONS sponsors Welcome EDAA EDAC ecsi

IEEE Council on EDA

Russian Academy of Sciences RAS

Technical co-sponsors:

IEEE Computer Society Test Technology Technical Council (TTTC) IEEE Solid-State Circuits Society (SSCS) International Federation for Information Processing (IFIP)

SPONSORS

commercial sponsors

*

event sponsor

2 **General Information KEYNOTE SPEAKERS** 4 David Fuller, National Instruments, US Gerd Teepe, GLOBALFOUNDRIES, DE 6 Michael Bolle, Robert Bosch GmbH, DE Karl Leo, Technische Universität Dresden, DE EXCECUTIVE TRACK Yervant Zorian, Synopsys, US SYSTEM-LEVEL DESIGN 10 Jürgen Teich, University of Erlangen-Nuremberg, DE Johannes Stahl, Synopsys, US ADVANCING ELECTRONICS 11 **BEYOND CMOS** Ian O'Connor, Lyon Institute of Nanotechnology, FR Thomas Mikolajick, Namlab (cfAED), DE SPECIAL SESSIONS 12 Omar Hammami, ENSTA ParisTech, FR Wolfgang Mueller, University of Paderborn, DE DATE 14 – AT A GLANCE 14 A brief overview of the event MONDAY TUTORIALS 23 Twelve half-day tutorials 33 TECHNICAL SESSIONS Full listing of DATE technical programme, special sessions **AWARDS** 32 FRIDAY WORKSHOPS 103 Eight full-day workshops EXHIBITION PROGRAMME 128 Exhibitor List, Special Conference Sessions and Business Presentations in the Exhibition Theatre 136 **Detailed Index** 130 Committees 138 Venue Plan

programme guide

1

Dear Colleague,

We proudly present to you the Advance Programme of DATE 14. DATE combines an electronic systems design and test conference with an international exhibition for electronic design, automation and test, from system-level hardware and software implementation right down to integrated circuit design.

DATE 14 received 1090 paper submissions; an all-time high for DATE and an 8% increase over DATE 13. 890 of those submissions were eligible for review. Besides the large share (46%) of submissions coming from Europe, 23% of submissions are from North- America, 27% from Asia, and 4% from the rest of the world. This clearly demonstrates DATE's global reach and impact. The most attractive topics this year were: "Architectural and Microarchitectural Design" in the Design Methods and Tools Track, "Secure Systems" in the Application Design Track, "On-Line Test, Fault Tolerance and Reliable System Design" in the Test and Reliability Track and "Real-time, Networked, and Dependable Systems" in the Embedded Systems Software Track.

For the 17th successive year DATE has prepared an exciting technical program, with the help of more than 300 members of the Technical Program Committee who dedicated their time to perform 3620 reviews (more than four per submission).

The plenary keynote speakers on Tuesday are David Fuller, Vice President of Application and Embedded Software for National Instruments, to talk about "System Design Challenges for Next Generation Wireless and Embedded Systems" and Gerd Teepe, Director Design Engineering at GLOBALFOUNDRIES in Dresden, to talk about "The Growing Importance of Microelectronics from a Foundry Perspective". On the same day, the Executive Track offers a series of business panels discussing hot topics. Executive speakers from Synopsys, Cadence, IBM, IMEC, TSMC Europe, Mentor Graphics and many other companies leading the design and automation industry will address some of the complexity issues in electronics design and discuss about the advanced technology challenges and opportunities. To emphasize that DATE is the major event for designers, DATE 14 features invited sessions where Europe's famous consumer industry presents its best designs and design practices.

Gerhard Fettweis

Luca Fanucci

The main conference program from Tuesday to Thursday includes 77 technical sessions organized in parallel tracks from four areas:

- **D** Design Methods, Tools, Algorithms and Languages
- A Application Design
- T Test and Reliability
- E Embedded Software

Extra tracks are dedicated to the Executive Day on Tuesday and the two special days: "System Level Design" Day on Wednesday and "Advancing Electronics Beyond CMOS" Day on Thursday. There is a lunch-time keynote on Wednesday by Michael Bolle (Robert Bosch GmbH, DE), who will talk on "The connected car and its implication to the automotive chip roadmap". A second lunch-time keynote on Thursday by Karl Leo (Technische Universität Dresden, DE) will be on "Organic Electronics – From Lab to Markets". Additionally, there are 107 Interactive Presentations which are organized into five IP sessions.

Finally, DATE offers a comprehensive overview of commercial design and verification tools in its exhibition including vendor seminars and abundant networking possibilities with fringe meetings.

We wish you a productive and exciting DATE 14 and a memorable social party on Wednesday evening.

DATE 14 General Chair Gerhard Fettweis, TU Dresden, DE

DATE 14 Programme Chair Luca Fanucci, University of Pisa, IT

3

plenary session

Tuesday, March 25, 2014, 0830 - 1030 Opening Plenary, DATE Awards Ceremony and Keynote Addresses

first keynote address

Tuesday, March 25, 2014, 0910, Grosser Saal

1.1.1

System design challenges for next generation wireless and embedded **Systems**

David Fuller, National Instruments, US

Application demands in our embedded world are growing dramatically. Consumer expectations and the industry's forward-looking technology roadmaps paint a picture of a connected world full of intelligent devices once thought to have fixed functionalities. Researchers exploring next generation wireless systems, Internet of Things (IOT), and even machine-to-machine (M2M) communications face many challenges in making this vision a reality. Where once a single, isolated design flow addressed the discrete application, heterogeneous multi-processing architectures must be considered and embraced along with the connections to other devices and systems, and realworld sensor data. As the systems grow in complexity, new design approaches must also be developed and employed to expedite the research, design, and development cycle. David Fuller will outline challenges system designers face in developing cyber-physical systems and explore a graphical system design approach that includes hardware abstraction and comprehends a heterogeneous multiprocessing environment while embracing different models of computation. Through this new approach, system designers can shorten design cycles and the time to prototype ultimately accelerating deployment.

Tuesday, March 25, 2014, 0830 – 1030

Opening Plenary, DATE Awards Ceremony and Keynote Addresses

24-28 March 2014

second keynote address

Tuesday, March 25, 2014, 0950, Grosser Saal

plenary session

The growing importance of microelectronics from a foundry perspective

Gerd Teepe, GLOBALFOUNDRIES, DE

Microelectronics is the dominant industrial technology of today. Its rate of innovation, spelled out by Moore's Law, is exceptional by any commercial metric, especially, as it has been on this trajectory for almost 40 years. It is not surprising, that other industrial sectors are taking advantage of the innovation engine of the semiconductors for its own product innovation: Cars are safer and more economic, medical diagnostics are performing to a significantly higher level, and energy efficiency from the generation to the consumer is a lot more efficient. "The Internet" has become the basis for our communication, organization and planning in our economies with significant impact to our society. However, the Semiconductor industry is under a powerful transformation marked by the following trends: - Design Complexity is facing new challenges, as technological complexity is transferred to the design space at an accelerated pace - The SOC is dominating the design space - Intelligent Things are emerging with unprecedented cognitive and motion capabilities - The supply chain transformation is in full motion, with the foundry model at the forefront With these powerful trends in motion, we will have to rethink our approach towards semiconductors as part of the industrial system. It will not be sufficient any more to "enhance" traditional products like Cars, TVs, machines or phones with semiconductor content to make them perform at a higher level to increase its value to consumers. We need to rethink the connected world around us to truly assess the next generation of intelligent applications, which we are about to enter.

24-28 March 2014 Dresden, Germany DATE14

wednesday keynote address

Wednesday, March 26, 2014, 1330 - 1400, Saal 1

7.0

The connected car and its implication to the automotive chip roadmap

Michael Bolle, Robert Bosch GmbH, DE

The automotive industry is in a radical change process driven by technology. On the one hand side the proliferation of communication technologies into the car leads to internet connected vehicles. The vehicle will become an integral part of the internet – opening new processing paradigms for the car itself. On the other hand the vehicle itself significantly expands its sensor and processing capabilities by the use of radar, video, ultrasound sensors and usage of state of the art CPU and GPU processor architectures. In our talk we will address both developments and outline foreseen future applications as future driving assistant and infotainment systems as well as highly automated driving. We will discuss major requirements for the future electrical architectures and implications for future automotive chips.

thursday keynote address

Thursday, March 27, 2014, 1330 - 1400, Saal 1

11.0

Organic electronics – from lab to markets

Karl Leo, Technische Universität Dresden, DE

Organic semiconductors with conjugated electron system are currently intensively investigated for optoelectronic applications. This interest is spurred by novel devices such as organic light-emitting diodes (OLED), organic solar cells, and flexible electronics. I this talk, I will discuss some of the recent progress in realizing devices, in particular highly efficient white OLED for lighting and flexible organic solar cells. general information

This printed programme is intended to provide delegates with an easy reference document during their attendance at DATE 14. Full conference information including all technical programme details, information on awards, conference registration costs, information about accommodation, travel offers and social events is available on the conference website **www.date-conference.com**

Dates and Venue

The conference will take place from 24 to 28 March, 2014 in the MARITIM Hotel & International Congress Center Dresden (ICCD), Ostra-Ufer 2, Dresden, Germany – www.dresden-congresscenter.de. The accompanying exhibition is scheduled from 25 to 27 March, 2014 on the Terrace Level of the ICCD.

Interactive Programme Online

A fully interactive DATE 14 programme is available on the web **www.date-conference.com** where you will be able to view the entire details of the programme and plan your attendance in advance.

Internet Access

The conference organisers will again provide free wireless internet access on-site throughout the whole congress center. Every registered delegate will receive an own WLAN login code at the registration desk (Terrace Level).

Proceedings

The conference proceedings are available for download on-site through the DATE-WLAN for every registered conference delegate. Link: www.date-conference.com/proceedings

Coffee & Lunch Breaks

During the conference days (Tuesday to Thursday), the exhibition area on the Terrace Level of the International Congress Centre also hosts the coffee and lunch break area. During the below-mentioned times, coffee and tea will be served during the coffee breaks as well as light snacks during the lunch break (for fully registered conference delegates only). Furthermore, there is a cash bar on the Terrace Level for visitors and exhibitors.

Tuesday, March 25, 2014	Coffee Break Lunch Break Coffee Break	1030 - 1130 1300 - 1430 1600 - 1700
Wednesday, March 26, 2014	Coffee Break Lunch Break Coffee Break	1000 - 1100 1230 - 1400 1600 - 1700
Thursday, March 27, 2014	Coffee Break Lunch Break Coffee Break	1000 - 1100 1230 - 1400 1530 - 1600

Welcome Reception Monday, March 24, 2014

The organisers kindly invited all registered conference delegates to the DATE 14 Welcome Reception which will take place on Monday, March 24, 2014, from 1800 – 1900 in "Saal 1" of the congress centre. Subsequently, the PhD Forum will take place from 1900 – 2100 in the same room, where every interested delegate can attend as well.

7

Dresden, Germany DATE14

general information

Exhibition Reception Tuesday, March 25, 2014

The Exhibition Reception will take place on Tuesday, March 25, 2014, from 1830 – 1930 in the exhibition area (Terrace Level), where free drinks and snacks for all conference delegates and exhibition visitors will be offered.

DATE Party

Wednesday, March 26, 2014

The DATE Party is again scheduled on the second conference day, Wednesday, March 26, 2014, starting from 1930. This year, it will take place in one of Dresden's most exciting and modern buildings, the "Gläserne Manufaktur" of the car manufacturer Volkswagen AG (www. glaesernemanufaktur.de/en/). The party will feature a flying buffet style dinner with various catering points and accompanying drinks. Light background music and the possibility of guided visits through the extraordinary premises will round off the evening. It provides a perfect opportunity to meet friends and colleagues in a relaxed atmosphere while enjoying local amenities.

Please kindly note that it is no seated dinner.

All delegates, exhibitors and their guests are encouraged to attend the party. Please be aware that entrance is only possible with a party ticket. Each full conference registration includes a ticket for the DATE Party. Additional tickets can be purchased on-site at the registration desk (subject to availability of tickets).

Ticket price for the full Evening Social Programme: 75 € per person. **DATE Party Shuttle:** There will be an organised shuttle by tram to the DATE Party venue and back for all conference delegates having a Party Ticket. Meeting point: 1845 in front of the main entrance of the International Congress Center Dresden (ICCD). The trams then start at 1900 from the tram station "Kongresszentrum".

The DATE Party is co-sponsored by the City of Dresden.

Interactive Presentations

Interactive presentations allow presenters to interactively discuss novel ideas and work in progress that may require additional research work and discussion, with other researchers working in the same area. Interested attendees can walk around freely and talk to any author they want in a vivid face-to-face format. The author may illustrate his work with a slide show on a laptop computer, a demonstration, etc. IP presentations will also be accompanied by a poster. Each IP will additionally be introduced in a relevant regular session prior to the IP Session in a one-minute presentation.

To give an overview, there will be one central projection displaying a list of all the presentations going on at the same time in the IP area. Interactive Presentation (IP) Sessions will be held on the Conference Level of the congress centre in 30-minute time slots on the following days:

 IP Session 1, Tuesday, March 25, 2014
 Conference Level, Foyer
 1600 - 1630

 IP Session 2, Wednesday, March 26, 2014
 Conference Level, Foyer
 1000 - 1030

 IP Session 3, Wednesday, March 26, 2014
 Conference Level, Foyer
 1000 - 1630

 IP Session 4, Thursday, March 27, 2014
 Conference Level, Foyer
 1000 - 1630

 IP Session 5, Thursday, March 27, 2014
 Conference Level, Foyer
 1000 - 1030

After the last IP Session of each day, the "Best IP of the Day" will be awarded.

executive sessions – tuesday

Organiser: Yervant Zorian, Synopsys, US

DATE 2014 will again feature an Executive Track of presentations by leading company executives representing a range of semiconductor manufacturers, EDA vendors, fables houses and IP providers. This one-day program will be held on Tuesday 25 March, the first day of the DATE conference immediately after the Opening Session and it will be comprised of three sessions where the executives will present their technical/business vision in this nanometer technology era. Each session will feature 3-4 executives and run in parallel to the technical conference tracks.

All three executive sessions will first provide each executive with a time-slot to present his/her vision, followed by a question and answer period to provide interaction with the attendees. The Executive Track should offer prospective attendees valuable information about the vision and roadmaps of their corresponding companies from a business and technology point-of-view.

EXECUTIVE SESSION:

How to Handle Today's Design Complexity

— see page 33

3.1

EXECUTIVE SESSION:

Advanced Technology Challenges & Opportunities

— see page 38

EXECUTIVE SESSION:

Addressing Challenges of Reliable Chips

— see page 46

9

8

special day – wednesday

Organisers and Co-Chairs: Jürgen Teich, University of Erlangen-Nuremberg, DE Johannes Stahl, Synopsys, US

System-Level Design

The special day **System-Level Design** will reflect current industrial practices as well as present recent advances in this research area. A particular emphasis will be on ultra-low power design and modeling at multiple abstraction levels, virtual platforms for software development and architecture design of MPSoCs. We will also take a look at high-level synthesis from different input languages as well as software code generation techniques. Important topics also include multicore enablement for safety-critical and real-time embedded systems as well as accelerator-rich design for the fight against dark silicon.

SPECIAL day – thursday

Organisers and Co-Chairs: Ian O'Connor, Lyon Institute of Nanotechnology, FR Thomas Mikolajick, Namlab (cfAED), DE

Advancing Electronics beyond CMOS

As the issues associated with CMOS scaling become harder and more costly to solve, the special day **Advancing Electronics beyond CMOS** will cover the latest trends towards alternative devices and paradigms for computing and data acquisition, storage and transport. Important topics include nanoscale switching devices and computing nanofabrics, trends in memory technologies in hybrid 3D integration, flexible and organic electronics, new state variable vectors (spintronics, photonics) and interfaces to the natural world (sensor networks, data analysis, displays, MEMS).

5.1	SPECIAL DAY Hot Topic: Predictable Multi-Core Computing – see page 51	9.1	SPECIAL DAY Hot Topic: CMOS scaling - from evolutionary to revolutionary computing – see page 76
6.1	SPECIAL DAY Hot Topic: The fight against Dark Silicon – see page 58	10.1	SPECIAL DAY Hot Topic: Memories today and tomorrow – see page 83
7.0	Special Day Keynote – see page 63	11.0	Special Day Keynote – see page 89
7.1	SPECIAL DAY Panel: HW/SW Co-Development - The Industrial Workflow – see page 64	11.1	SPECIAL DAY Embedded Tutorial: Alternatives to CMOS – see page 89
8.1	SPECIAL DAY System Simulation and Virtual Prototyping – see page 70	12.1	SPECIAL DAY Hot Topic: The future of interfacing to the natural world – see page 97

24-28 March 2014 Dresden, Germany DATE14

special sessions

Special Session Chairs: Omar Hammami, ENSTA ParisTech, FR Wolfgang Mueller, University of Paderborn, DE

special sessions

The following 16 Special Sessions have been organized, which should prove to be of great general interest. Panel Sessions provide forums in which motivated opinions on unsettled issues are discussed. The 'trend setters' are given a time-slot to present their views, which are then subjected to critical appraisal and rich exchanges from the audience. Hot Topic Sessions give technical information about strongly emerging topics and offer a good overview and technical insight provided by leading experts in the field. Relevant issues and their importance for research and development are exposed as food for thought. Embedded Tutorials give an insight of relevant topics usually starting from an introductory basis.

- 2.2 Panel: Emerging vs. Established Technologies: a Two Sphinxes' Riddle at the Crossroads? Organiser: Marco Casale-Rossi, Synopsys, IT
- 2.8 Hot Topic: Technology Transfer towards Horizon 2020 Organiser: Rainer Leupers, RWTH Aachen, DE
- 3.2 Panel: The World Is Going... Analog & Mixed-Signal! What about EDA? Organiser: Marco Casale-Rossi, Synopsys, IT
- 3.8 Hot Topic: Mission Profile Aware Design The Solution for Successful Design of Tomorrow Automotive Electronics

Organisers: Goeran Jerke, Robert Bosch GmbH, DE Oliver Bringmann, University of Tuebingen, DE

- 4.2 Hot Topic: Multicore Systems in Safety Critical Electronic Control Units for Automotive and Avionics Organisers: Jürgen Becker, KIT, DE Oliver Sander, KIT, DE
- 5.2 Hot Topic: Hacking and Protecting Hardware: Threats and Challenges Organisers: Said Hamdioui, TU Delft, NL

Giorgio Di Natale, LIRMM, FR

- 5.8 Embedded Tutorial: System Integration The Bridge between More than Moore and More Moore Organisers: Manfred Dietrich, Fraunhofer IIS/EAS Dresden, DE Kai Hahn, University Siegen, DE
- 6.2 Embedded Tutorial: Emerging Transistor Technologies: From Devices to Architectures

Organisers: Michael Niemier, University of Notre Dame, US X. Sharon Hu, University of Notre Dame, US

*

- 7.2 Embedded Tutorial: Cross Layer Resiliency in Real World Organiser: Vikas Chandra, ARM, US
- 8.2 Hot Topic: Near Threshold Computing (NTC) Organiser: Michael Huebner, Ruhr-University Bochum, DE
- 8.8 Hot Topic: Beyond CMOS Ultra-low-power Computing Organiser: Saibal Mukhopadhyay, Georgia Institute of Technology, US
- 9.5 Hot Topic: Connecting Different Worlds Technology Abstraction for Reliability-Aware Design and Test Organisers: Ulf Schlichtmann, Technische Universität München, DE Andreas Herkersdorf, Technische Universität München, DE
- 9.8 Embedded Tutorial: Memcomputing: the Cape of Good Hope Organisers: Yiyu Shi, Missouri University of Science & Technology, US Hung-Ming Chen, National Chiao Tung University, TW
- 11.8 Embedded Tutorial: GPGPUs: how to combine high computational power with high reliability Organiser: Matteo Sonza Reorda, Politecnico di Torino, IT
- 12.2 Hot Topic: How Secure are PUFs Really? On the Reach and Limits of Recent PUF Attacks Organiser: Ulrich Rührmair, TU München, DE
- 12.8 Panel: Future SoC verification methodology: UVM evolution or revolution? Organiser: Alex Goryachev, IBM Research - Haifa, IL

10

EVENTOVERVENt overview

MONDAY

Educational Tutorials ACM SIGDA/EDAA PhD Forum Fringe Meetings Welcome Reception

TUESDAY

Opening Plenary, DATE Awards Ceremony and Keynote Addresses Technical Conference Vendor Exhibition & Exhibition Theatre Executive Sessions University Booth Fringe Meetings Exhibition Reception

WEDNESDAY

Technical Conference Vendor Exhibition & Exhibition Theatre Special Day on "System-Level Design" and Keynote University Booth DATE Party

THURSDAY

Technical Conference Vendor Exhibition & Exhibition Theatre Special Day on "Advancing Electronics beyond CMOS" and Keynote University Booth Fringe Meetings

FRIDAY

Special Interest Workshops

CONTACTS

DATE 2014 Event Secretariat

c/o K.I.T. Group GmbH Dresden Muenzgasse 2 01067 Dresden, Germany Phone: +49 351 4967 541 Fax: +49 351 4956 116 E-Mail: date14@kit-group.org

Exhibition Manager:

Franziska Kremling K.I.T. Group GmbH, DE Phone: +49 351 4967 541 Registration & Accommodation Eva Schubert K.I.T. Group GmbH, DE Phone: +49 351 4967 312

#

*

*

www.date-conference.com

0730	TUTORIAL R	EGISTRATIO	N AND WELC	OME REFRES	HMENTS	
Breaks	1100 – 1130 MORNING COFFEE BREAK, 1600 – 1630 AFTERNOON COFFEE BREAK					
0930 - 1300	Konferenz 1 M01 Develop- ment of mixed- criticality systems based on system partitio- ning	Konferenz 2 M02 Software Debug on ARM Pro- cessors in Emulation	Konferenz 3 M03 Automatic fixed-point conversi- on: a gate way to high-level power optimiza- tion	Konferenz 4 M04 Dynamic Hetero- geneous Architec- tures to Address The Efficiency Crisis!	Konferenz 6 M05 Wireless NoC as Intercon- nection Backbone for Multi- core Chips: Promises, Challen- ges, and Recent Develop- ments	Konferenz 5 M06 Testing of TSV-Base 2.5D- and 3D-Sta- cked ICs
1300 – 1430	LUNCH BRE	AK				
1330	CONFERENC	CE REGISTRA	TION BEGINS			
	Konferenz 1	Konferenz 2	Konferenz 3	Konferenz 4	Konferenz 6	Konferenz 5
1430 - 1800	M07 L4/Fiasco. OC - A Microker- nel OS De- signed for Security, Real-Time and Relia- bility	M08 Micro- fluidic Biochips: A Vision for More than Moore and Bioche- mistry-on-	M09 Energy- Efficient System Design Through Error- Resilient Computing	M10 A Cyber- Physical Approach to Modeling, Simulation and Ve- rification of Smart Systems	M11 Post- Silicon Validation and De- bug: Best Practices and Disruptive Innovation	M12 All You Need to Know About Hardware Trojans and Counterfei ICs
	,	Chip		-,		

monday 24 march

tuesday 25 march

*

tuesday 25 march

0730	REGISTRATION, T	errace Level, AND	SPEAKER'S BREAK	FAST, Saal 2		
0830- 1030	1.1 OPENING PLENARY, DATE AWARDS CEREMONY AND KEYNOTE ADDRESSES, Grosser Saal					
1030 – 1130	EXHIBITION AND COFFEE BREAK					
	EXECUTIVE SESSIONS	SPECIAL SESSIONS	A-TRACK	D-TRACK		
1130 – 1300	Saal 1 2.1 EXECUTIVE SESSION: How to Handle Today's Design Complexity	Konferenz 6 2.2 Panel: Emerging vs. Established Technologies: a Two Sphinxes' Riddle at the Crossroads?	Konferenz 1 2.3 Making automotive systems safer and more energy efficient	Konferenz 2 2.4 Modern Challenges in Analog and Mixed-Signal Design		
1300 — 1430	LUNCH BREAK					
1430 – 1600	Saal 1 3.1 EXECUTIVE SESSION: Advanced Technology Challenges & Opportunities	Konferenz 6 3.2 Panel: The World Is Going Analog & Mixed-Signal! What about EDA?	Konferenz 1 3.3 Secure Hardware Primitives and Implementations	Konferenz 2 3.4 Modeling and Optimization of Power Distribution Networks		
1600 — 1700	COFFEE BREAK co-	sponsored by ELSEV	/IER			
1600 – 1630	IP1 INTERACTIVE F Conference Level,	PRESENTATIONS AN Foyer	D BEST IP AWARD,			
1700 – 1830	Seal 1 4.1 EXECUTIVE SESSION: Addressing Challenges of Reliable Chips	Konferenz 6 4.2 Hot Topic: Multicore Systems in Safety Critical Electronic Control Units for Automotive and Avionics	Konferenz 1 4.3 Secure Device Identification	Konferenz 2 4.4 "Almost there" emerging technologies		
1830 – 1930	EXHIBITION RECE	PTION				
Plenary Executi	Session ve Session Spec	ial Session 📕 IP	Session Exhib	vition Theatre Sessi		

*

*

*

*

*

*

0830- 1030	1.1 OPENING PLENARY, DATE AWARDS CEREMONY AND KEYNOTE ADDRESSES, Grosser Saal				
1030 – 1130	EXHIBITION AND (EXHIBITION AND COFFEE BREAK			
	D-TRACK	E-TRACK	T-TRACK	EXHIBITION Theatre	
	Konferenz 3	Konferenz 4	Konferenz 5	Exhibition Theatre	
1130 – 1300	2.5 Low-Power and Efficient Architectures	2.6 Real-Time memory hierarchies	2.7 Yield and Reliability for Robust Systems	2.8 Hot Topic: Technology Transfer toward Horizon 2020	
1300 – 1430	LUNCH BREAK				
	Konferenz 3	Konferenz 4	Konferenz 5	Exhibition Theatre	
1430 – 1600	3.5 Robust Architectures	3.6 Cyber Physical Systems: Security and Co-design	3.7 On line Strategies for Reliability	3.8 Hot Topic: Mission Profile Aware Design - The Solution for Successful Design of Tomorrows Automotive Electronics	
1600 – 1700	COFFEE BREAK co	-sponsored by ELSEV	/IER		
1600 – 1630	IP1 INTERACTIVE I Conference Level,	PRESENTATIONS AN Foyer	D BEST IP AWARD,		
	Konferenz 3	Konferenz 4	Konferenz 5	Exhibition Theatre	
1700 – 1830	4.5 Memory System Architectures	4.6 Code Generation and Optimization for Embedded Platforms	4.7 Dependable System Design	4.8 State-of-the-art in Verification: European Tertulia IC Design - Enablir AMS Structured Verification in FPG & IP design flows	
1830 – 1930	EXHIBITION RECE	PTION			

16

wednesday 26 march

 \star

*

0730	REGISTRATION, T	errace Level, AND	SPEAKER'S BREAK	FAST, Saal 2
	SPECIAL DAY	SPECIAL SESSIONS	A-TRACK	D-TRACK
	Saal 1	Konferenz 6	Konferenz 1	Konferenz 2
0830 – 1000	5.1 SPECIAL DAY Hot Topic: Predictable Multi-Core Computing	5.2 Hot Topic: Hacking and Protecting Hardware: Threats and Challenges	5.3 Reliable Systems in the Age of Variability	5.4 Prediction and optimization of timing variations
1000 – 1100	EXHIBITION AND C	COFFEE BREAK		
1000 - 1030	IP2 INTERACTIVE F	PRESENTATIONS, Co	nference Level, Foye	Pr
	Saal 1	Konferenz 6	Konferenz 1	Konferenz 2
1100 – 1230	6.1 SPECIAL DAY Hot Topic: The fight against Dark Silicon	6.2 Embedded Tutorial: Emerging Transistor Trechnologies: From Devices to Architectures	6.3 Management of Micro/Macro Renewable Energy Storage Systems	6.4 Power delivery and distribution
1230 - 1400	LUNCH BREAK			
1330 - 1400	7.0 SPECIAL DAY K	EYNOTE, Saal 1		
	Saal 1	Konferenz 6	Konferenz 1	Konferenz 2
1430 – 1600	7.1 SPECIAL DAY Panel: HW/SW Co- Development - The Industrial Workflow	7.2 Embedded Tutorial: Cross Layer Resiliency in Real World	7.3 Low power methods and multicore architectures for mobile health applications	7.4 Runtime memory optimization and GPU/manycore architectures
1600 – 1700	COFFEE BREAK			
1600 - 1630	IP3 INTERACTIVE F Conference Level,	PRESENTATIONS AN Foyer	D BEST IP AWARD,	
	Saal 1	Konferenz 6	Konferenz 1	Konferenz 2
1700 – 1830	8.1 SPECIAL DAY: System Simulation and Virtual Prototyping	8.2 Hot Topic: Near Threshold Computing (NTC)	8.3 Physical Attacks and counter- measures	8.4 Efficient Designs for Telecom and Financial Applications

0730	REGISTRATION, T	errace Level, AND	SPEAKER'S BREAK	FAST, Saal 2
	D-TRACK	E-TRACK	T-TRACK	EXHIBITION THEATRE
	Konferenz 3	Konferenz 4	Konferenz 5	Exhibition Theatre
0830 – 1000	5.5 Boosting the Scalability of Formal Verification Technologies	5.6 Emerging logic technologies	5.7 Test generation and optimization	5.8 Embedded Tutorial: System Integration – The Bridge between More than Moore and More Moore
1000- 1100	EXHIBITION AND C	OFFEE BREAK		
1000 - 1030	IP2 INTERACTIVE F	RESENTATIONS, Co	nference Level, Foye	er
	Konferenz 3	Konferenz 4	Konferenz 5	Exhibition Theatre
1100 – 1230	6.5 Beyond EDA: Extending the Application Domain of Formal Methods	6.6 Model-Based Design and Hardware/ Software Interfaces	6.7 Hardening Approaches at Different Design Levels	6.8 First Time Right in Analog Design Enabling New Business Cases
1230 - 1400	LUNCH BREAK			
1330 <i>-</i> 1400	7.0 SPECIAL DAY K	EYNOTE, Saal 1		
1330 -	7.0 SPECIAL DAY K Konferenz 3	EYNOTE, Saal 1 Konferenz 4	Konferenz 5	Exhibition Theatre
1330 -	T		Konferenz 5 7.7 Design-for-Test and Test Access	Exhibition Theatre 7.8 FD-S01 – the Enabling European Technology for Energy Efficient Solutions – Creating a Solution Hwe & Design Hub as Eco-System for Future Success
1330 - 1400 1430 -	Konferenz 3 7.5 Emerging memory	Konferenz 4 7.6 Performance and	7.7 Design-for-Test	7.8 FD-SOI – the Enabling European Technology for Energy Efficient Solutions – Creating a Solution Hive & Design Hub as Eco-System for
1330 - 1400 1430 - 1600 1600 -	Konferenz 3 7.5 Emerging memory technologies	Konferenz 4 7.6 Performance and timing analysis	7.7 Design-for-Test and Test Access	7.8 FD-SOI – the Enabling European Technology for Energy Efficient Solutions – Creating a Solution Hive & Design Hub as Eco-System for
1330 - 1400 - 1600 - 1700 - 1600 -	Konferenz 3 7.5 Emerging memory technologies COFFEE BREAK IP3 INTERACTIVE F	Konferenz 4 7.6 Performance and timing analysis	7.7 Design-for-Test and Test Access	7.8 FD-SOI – the Enabling European Technology for Energy Efficient Solutions – Creating a Solution Hive & Design Hub as Eco-System for
1330 - 1400 - 1600 - 1700 - 1600 -	Konferenz 3 7.5 Emerging memory technologies COFFEE BREAK IP3 INTERACTIVE F Conference Level,	Konferenz 4 7.6 Performance and timing analysis RESENTATIONS AN Foyer	7.7 Design-for-Test and Test Access D BEST IP AWARD,	7.8 FD:SOI – the Enabling European Technology for Energy Efficient Solutions – Creating a Solution Hive & Design Hub as Eco-System for Future Success
1330 - 1400 - 1600 - 1600 - 1630 - 1630 - 17700 -	Konferenz 3 7.5 Emerging memory technologies COFFEE BREAK IP3 INTERACTIVE F Conference Level, Konferenz 3 8.5 Modeling & Specification	Konferenz 4 7.6 Performance and timing analysis RESENTATIONS AN Foyer Konferenz 4 8.6 Mapping and Scheduling for Many-Core Embedded	7.7 Design-for-Test and Test Access D BEST IP AWARD, Konferenz 5 8.7 Performance Modeling and Delay Test	7.8 FD-SOI - the Enabling European Technology for Energy Efficient Solutions - Creating a Solution Hive & Design Hub as Eco-System for Future Success Exhibition Theatre 8.8 Hot Topic: Beyond CMOS Ultra-Jow-power

*

×

¥

 \bigstar

wednesday 26 march

www.date-conference.com

thursday 27 march

thursday 27 march

REGISTRATION, T	errace Level, AND	SPEAKER'S BREAK	FAST, Saal 2
SPECIAL DAY	D-TRACK	A-TRACK	D-TRACK
Saal 1	Konferenz 6	Konferenz 1	Konferenz 2
9.1 SPECIAL DAY Hot Topic: CMOS scaling - from evolutionary to revolutionary computing	9.2 Low-Cost, High- Performance NoCs	9.3 Hardware Implementations for Data Security	9.4 Timing challenges in validation
EXHIBITION AND C	OFFEE BREAK		
IP4 INTERACTIVE F	RESENTATIONS, Co	nference Level, Foye	٢
Saal 1	Konferenz 6	Konferenz 1	Konferenz 2
10.1 SPECIAL DAY Hot Topic: Memories today and tomorrow	10.2 Wireless NoCs	10.3 Green Computing Systems	10.4 System-level evaluation
LUNCH BREAK			
11.0 SPECIAL DAY	KEYNOTE, Saal 1		
Saal 1	Konferenz 6	Konferenz 1	Konferenz 2
11.1 SPECIAL DAY Embedded Tutorial: Alternatives to CMOS	11.2 Transitioning NoC Design Techniques to Future Challenges	11.3 Industry relevant research and practice for system design	11.4 Enabling validation on fast platforms
COFFEE BREAK			
		D BEST IP AWARD,	
Saal 1	Konferenz 6	Konferenz 1	Konferenz 2
12.1 SPECIAL DAY Hot Topic: The future of interfacing to the natural world	12.2 Hot topic: How Secure are PUFs Really? On the Reach and Limits of Recent PUF Attacks	12.3 Multimedia Systems	12.4 Physical Aspects
	SPECIAL DAY Saal 1 9.1 SPECIAL DAY Hot Topic: CMOS scaling - from evolutionary computing EXHIBITION AND C P4 INTERACTIVE F Saal 1 10.1 SPECIAL DAY Hot Topic: Memories today and tomorrow LUNCH BREAK 1.0 SBECIAL DAY Embedded Tutorial: Atternatives to CMOS COFFEE BREAK CMOS Saal 1 12.1 SPECIAL DAY Hot Topic: The future of Interfacing to the	SPECIAL DAY D-TRACK Saal 1 Konferenz 6 9.1 S.2 SPECIAL DAY Hot Topic: S.2 LOW-Cost, High- Performance NoCs NoCs EXHIBITION AND COFFEE BREAK I IP4 INTERACTIVE PRESENTATIONS, Corstal I Saal 1 Konferenz 6 10.1 IO.2 SPECIAL DAY Hot Topic: Wireless NoCs Memories today and tomorrow IO.2 SPECIAL DAY Hot Topic: Morenz 6 11.1 SPECIAL DAY Hot Topic: Memories today and tomorrow Incerenz 6 11.1 SPECIAL DAY Hot Topic: Saal 1 Konferenz 6 11.1 SPECIAL DAY Hot Topic: Saal 1 Konferenz 6 COFFEE BREAK Future Challenges Coffee BREAK IP5 INTERACTIVE PRESENTATIONS AN Conference Level, Foyer Saal 1 Konferenz 6 12.1 SPECIAL DAY Hot Topic: Phot Kupic: How Secure are PUFs Really? On the Reach and Limits of Recent	Saal 1Konferenz 6Konferenz 19.1 SPECIAL DAY Hot Topic: CMOS scaling - from evolutionary to revolutionary computing9.2 Low-Cost, High- Performance NoCs9.3 Hardware Implementations for Data SecurityEXHIBITION AND COFFEE BREAKIP4 INTERACTIVE PRESENTATIONS, Conference Level, FoyeSaal 1Konferenz 6Konferenz 110.1 SPECIAL DAY Hot Topic: Memories today and tomorrow10.2 Wireless NoCs10.3 Green Computing SystemsLUNCH BREAKLUNCH BREAKILINCH Conferenz 6Konferenz 11.1 Saal 1Konferenz 6Konferenz 11.1 Saal 1ILI Soft Colspan Future ChallengesSaal 1Konferenz 6Konferenz 6<

×

*

*

 \star

0730	REGISTRATION, T	errace Level, AND	SPEAKER'S BREAK	FAST, Saal 2
	D-TRACK	E-TRACK	D-TRACK	EXHIBITION THEATRE
	Konferenz 3	Konferenz 4	Konferenz 5	Exhibition Theatre
0830- 1000	9.5 Hot Topic: Connecting Different Worlds – Technology Abstraction for Reliability-Aware Design and Test	9.6 Schedulability analysis	9.7 Timing Analysis and Cell Design	9.8 Embedded Tutorial: Memcomputing: the Cape of Good Hope
1000 1100	EXHIBITION AND (OFFEE BREAK		
1000 – 1030	IP4 INTERACTIVE F	PRESENTATIONS, Co	nference Level, Foy	er
	Konferenz 3	Konferenz 4	Konferenz 5	Exhibition Theatre
1100 – 1230	10.5 Analysis of Components and Systems	10.6 Multi-processor and distributed systems	10.7 Advances in Synthesis	10.8 EDA+3D+ MEMS Innovation Agenda 2020 Fueling the Innovation Chain of Electronics
1230 – 1400	LUNCH BREAK			
1330 - 1400	11.0 SPECIAL DAY	KEYNOTE, Saal 1		
	Konferenz 3	Konferenz 4	Konferenz 5	Exhibition Theatre
1400 – 1530	11.5 Memory Resource Allocation and Scheduling in MPSoC	11.6 System-Level Thermal Estimation and Management	11.7 Power and Emerging Technologies in Reconfigurable Computing	11.8 Embedded Tutorial: GPGPUs: how to combine high computational power with high reliability
1530 — 1600	COFFEE BREAK			
1530 – 1600	IP5 INTERACTIVE F Conference Level,	PRESENTATIONS AN Foyer	D BEST IP AWARD,	
	Konferenz 3	Konferenz 4	Konferenz 5	Exhibition Theatre
1600 – 1730	12.5 System-level Design Space Exploration	12.6 Error Resilience and Power Management	12.7 Built-in self-test solutions for mixed-signal and RF ICs	12.8 Panel: Future SoC verification methodology: UVM evolution o revolution?

friday 28 march

tutorials

h 7	1	•		

WORKSHOP REGISTRATION AND WELCOME REFRESHMENTS

Breaks

PLEASE SEE INDIVIDUAL WORKSHOP PROGRAMMES FOR LUNCH AND BREAK TIMES

0830-1700	0830-1700	0830-1700	0830-1700
Konferenz 1	Konferenz 2	Konferenz 3	Konferenz 4
W1 International Work- shop on Dependable GPU Computing	W2 ES4CPS - Enginee- ring Simulations for Cyber-Physical Systems	W3 Electronic System-Level Design towards Heteroge- neous Computing	W4 Workshop on Design Automation for Understanding Hard- ware Designs
0815-1630	0830-1630	0830-1700	0830-1700
Konferenz 5	Konferenz 6	Seminar 5+6	Seminar 3+4
W5 3D Integration: Applications, Tech- nology, Architecture, Design, Automation, and Test	W6 MEDIAN - Workshop on Manufacturable and Dependable Multicore Architec- tures at Nanoscale	W7 Memristor Science & Technology	W8 3PMCES – Perfor- mance, Power and Predictability of Many-Core Embed- ded Systems

Conference March 9 – 13, 2015 Exhibition March 10 – 12, 2015 Grenoble, France

*

MONDAY 24 MARCH 2014

TUTOBTALS

 $\mathbf{\dot{x}}$

0730-	0930	Tutorial Registration and Welcome Refreshments
0930	-1100	Tutorials (1100-1130 Coffee Break)
M01	Konferenz 1	Development of mixed-criticality systems based on system partitioning
M02	Konferenz 2	Software Debug on ARM Processors in Emulation
M03	Konferenz 3	Automatic fixed-point conversion: a gate way to high- level power optimization
M04	Konferenz 4	Dynamic Heterogeneous Architectures to Address The Efficiency Crisis!
M05	Konferenz 6	Wireless NoC as Interconnection Backbone for Multicore Chips: Promises, Challenges, and Recent Developments
M06	Konferenz 5	Testing of TSV-Based 2.5D- and 3D-Stacked ICs
1300-	-1430	Lunch
1330		CONFERENCE REGISTRATION BEGINS
1430-	1800	Tutorials (1600-1630 Coffee Break)
M07	Konferenz 1	L4/Fiasco.OC - A Microkernel OS Designed for Security, Real-Time and Reliability
M08	Konferenz 2	Microfluidic Biochips: A Vision for More than Moore and Biochemistry-on-Chip
M09	Konferenz 3	Energy-Efficient System Design Through Error-Resilient Computing
M10	Konferenz 4	A Cyber-Physical Approach to Modeling, Simulation and Verification of Smart Systems
M 11	Konferenz 6	Post-Silicon Validation and Debug: Best Practices and Disruptive Innovation
M12	Konferenz 5	All You Need to Know About Hardware Trojans and Counterfeit Ics
1800	-1900	Welcome Reception
1900-	-2100	ACM SIGDA/EDAA PhD Forum

MONDAY

24-28 March 2014 Dresden, Germany DATE14

M03

Konferenz 3

0930 AUTOMATIC FIXED-POINT CONVERSION: A GATE WAY TO HIGH-LEVEL POWER OPTIMIZATION

drivers. This allows earlier access to the design for the software team. It also allows software to be used to drive activity; exercising realistic use cases as part of the hardware verification. This software will need to be debugged. The emulated design will likely contain all

the debug facilities, such as JTAG and ETM, as the final device. These

can be used in emulation just as they would on the final silicon. Em-

ulators will allow access to signals around the core, not accessible in

This gives the developer a number of options for debugging. This ses-

the final device, which can used to debug and trace the processor.

sion explores the different debug approaches available, trade-offs

involved in each approach, and how and when they can be most effectively applied during the design cycle. Russ Klein is a Technical

Director in Mentor's emulation division. He has been developing veri-

fication and debug solutions which span the boundaries between

hardware and software for over 20 year.

Speakers: Daniel Ménard, INSA Rennes, FR David Novo, EPFL, CH Karthick Parashar, Imperial College London, GB Olivier Sentieys, Inria and University of Rennes, FR

Given that Moore's law scaling has hit the power-wall, reducing power consumption of high-performance embedded systems becomes very crucial. It is also well admitted that system-level techniques offer the greatest potential for optimizing power. In this tutorial, we demonstrate how the careful tuning of the fixed-point arithmetic used to implement numerous functionalities in embedded system applications, can lead to significant savings in power consumption. Interestingly, proper dimensioning of the bit widths used to represent signals or variables can reduce the power consumption in both hardware and software implementations. Even in software implementation, the pervasive use of Single Instruction Multiple Data (SIMD) datapaths in modern processors is pushing designers to meddle with bit allocation. Often, a reduction in bit widths can enable the use of more SIMD slots, which increases the parallelism boosting the speed and energy efficiency of the software implementation. Although quantization effects in digital signal processing systems have been studied since the 70's, significant progress has been made in the recent years. This tutorial packs nearly a decade of research in designing systems with fixed-point arithmetic. We expose the deficiency in the support offered by existing EDA tools and motivate the need for new solutions. Accordingly, we put into perspective several recent techniques that have been developed to facilitate a quick analysis of the impact of a selected fixed-point format on the system performance and cost. We analyze the fixed-point refinement in a comprehensive way from a tools perspective, dividing the problem into various design steps (e.g., range and precision analysis). For each step, we present concrete solutions amenable to design automation that are illustrated with multiple relevant design examples from the wireless communication, multi-media and other signal processing domains.

Tutorials Chair: Franco Fummi, Universita' di Verona, IT

Twelve pre-conference tutorials will be given on Monday. All tutorials are half-day tutorials, six to be given in the morning (M01-M06) and six in the afternoon (M07-M12). A participant should enroll for one morning and/or one afternoon half-day tutorial (it is possible to attend for a morning or afternoon only).

tutorials

The titles, organisers, speakers, and abstracts of the tutorials are given hereafter:

M01

Konferenz 1

- 0930 DEVELOPMENT OF MIXED-CRITICALITY SYSTEMS BASED ON SYSTEM PARTITIONING
- Speakers: Alfons Crespo, Universidad Politécnica de Valencia, ES Alejandro Alonso, Universidad Politécnica de Madrid, ES Jon Pérez, IK4-IKERLAN, ES

Modern embedded applications typically integrate a multitude of functionalities with potentially different criticality levels into a sinale system. In addition, the increasing power of mono-core and multi-core processors make it possible to integrate them in a single platform. However, this implies a number of challenges, being the integration of mixed-criticality applications one of them. System partitioning emerges as a powerful alternative for dealing with these challenges. An hypervisor allows creating several virtual machines, that run with spatial and temporal isolation. Applications are assigned to partitions, according to several criteria, such as its criticality. Resources are assigned to virtual machines, to guarantee the fulfilment of applications time requirements. This approach is also valid for multi-cores. This tutorial will introduce the attendee the basic techniques in the development of partitioned high integrity embedded systems, which will be illustrated with an industrial case study. This development relies on the XtratuM hypervisor and supporting tools for validation, partitioning, and code and configuration files generation. This tutorial will benefit attendees from the industry, as it will show in a practical manner the basics in the development of partitioned embedded systems. They could have an idea on how to integrate this approach on their current practices. Attendees from the academia will get acquainted with advance development techniques and open research topics. In addition, the availability of the development framework can be the base of laboratory assignments on advanced courses.

M02

Konferenz 2

0930 SOFTWARE DEBUG ON ARM PROCESSORS IN EMULATION

Speaker: Russ Klein, Mentor, US

Emulation systems can execute designs fast enough to run significant amounts of software. For example, one can execute the software boot process, run diagnostics, boot an OS, load and exercise

Konferenz 5

Konferenz 4

0930 DYNAMIC HETEROGENEOUS ARCHITECTURES TO ADDRESS THE **EFFICIENCY CRISIS!**

Speakers: Houman Houmavoun, George Mason University, US Farhang Yazdani, BroadPak Corporation, US Ayse Coskun, Boston University, US Hank Hoffmann, University of Chicago, US

The microprocessor industry is at a crossroads. While it continues to scale performance with each generation, we continue to drive this critically important technology domain. When performance scaling stops, microprocessors become a generic commodity and no longer a technology driver or enabler. Because modern processors are most heavily constrained by power, and sometimes energy, constraints, performance scaling no longer falls naturally from increased transistor counts. Instead, total performance is maximized by maximizing performance/ Watt. Future computing platforms will need to be flexible, scalable, conservative on power, while saving size, weight, energy, etc. In addressing these challenges, microprocessor industry is moving towards heterogeneous architecture design. Heterogeneous designs promise to push the envelope of power efficiency further by enabling general purpose processors to achieve the efficiency of customized cores. By enabling more diverse designs, and designs that are customized dynamically, we can push the efficiency envelope even further. This tutorial first reviews the major challenges facing semiconductor industry; in general performance, power, temperature and reliability, and in specific dark and unreliable silicon. The tutorial then introduces the concept of heterogeneous architecture to address the efficiency crisis and briefly reviews the state of the art in static and dynamic heterogeneous architectures in industry and academia. The tutorial then presents 3D design concept and argue how it can eliminate the fundamental barrier to dynamic heterogeneity. Finally it reviews the state of the art in simulators and modeling tools and how they can be integrated to accurately model performance, power, area, and temperature in 3D heterogeneous architectures. About the Team: The team consists of experts in interdisciplinary areas including heterogeneous architecture and 3D design (Houman Homayoun), temperature-aware design, DRAM and 3D integration (Ayse Coskun), 3D fabrication and packaging (Farhang Yazdani), and system architecture design (Hank Hoffman). The team consists of three faculties and one industry expert in the field. Houman Homayoun is an Assistant Professor of the Department of Electrical and Computer Engineering at George Mason University.

M05

26

Konferenz 6

WIRELESS NOC AS INTERCONNECTION BACKBONE FOR MULTICORE 0930 CHIPS: PROMISES, CHALLENGES, AND RECENT DEVELOPMENTS

Speakers: Radu Marculescu, Carnegie Mellon University, US Partha Pratim Pande, Washington State University, US Deukhyoun Heo, Washington State University, US Hiroki Matsutani, Keio University, JP

Continuing progress and integration levels in silicon technologies make possible complete end-user systems consisting of extremely high number of cores on a single chip targeting either embedded or high-performance computing. However, without new approaches for energy- and thermally-efficient design, as well as scalable, low power and high bandwidth on-chip communication architectures, this vision may remain a pipe dream. Towards this end, wireless Networkon-Chip (WiNoC) represents an emerging paradigm for designing low power, high bandwidth interconnect infrastructure for multicore chips. This tutorial will provide a timely and insightful journey into various challenges and emerging solutions of designing WiNoC architectures from a variety of different perspectives, ranging from very high levels of abstraction (e.g., system architecture) to very low levels (e.g., on-chip antenna and transceiver design). The tutorial will start by discussing the fundamentals of network-based communication for 2D and 3D multicore systems and advanced design techniques for multi-domain clock and power management for embedded and high-performance processors, using real examples of multicore platforms. The second part of the tutorial will focus on the design of high bandwidth and low power WiNoC architectures incorporating the small-world effects. We will present detailed performance evaluation and necessary design trade-offs for the small-world WiNoCs with respect to their conventional wireline counterparts. We will conclude this part of the tutorial by presenting design of on-chip millimeter (mm)-wave wireless link as the suitable physical layer for the WiNoCs. In the last part, we will complement the above discussions regarding planar WiNoCs by introducing the wireless 3D NoCs that use inductive coupling though-chip interfaces (TCIs) to connect stacked chips by square coils as data transmitters. We will present design and implementation of wireless 3D NoC systems, real-chip experimental results, and their interconnection techniques. By scope and contents, this tutorial targets students and researchers belonging to both academia and industry.

M06

TESTING OF TSV-BASED 2.5D- AND 3D-STACKED ICS 0930

Speakers: Erik Jan Marinissen, IMEC - Leuven, BE Krishnendu Chakrabarty, Duke University - Durham, NC, US

Stacked ICs with vertical interconnect containing fine-pitch microbumps and through-silicon vias (TSVs) are a hot-topic in design and manufacturing communities. These 2.5D- and 3D-SICs hold the promise of heterogeneous integration, inter-die connections with increased performance at lower power dissipation, and increased vield and hence decreased product cost. However, testing for manufacturing defects remains an obstacle and potential showstopper before stacked-die products can become a reality. There are concerns about the cost or, even worse, feasibility of testing such TSV-based 3D chips. In this tutorial, we present key concepts in 3D technology, terminology, and benefits. We discuss design and test challenges and emerging solutions for 2.5D- and 3D-SICs. Topics to be covered include an overview of 3D integration and trendsetting products such as a 2.5D-FPGA and 3D-stacked memory chips, test flows and test content for 3D chips, advances in wafer probing, 3D design-for-test architectures and ongoing IEEE P1838 standardization efforts for test access, and 3D test cost modeling and test-flow selection.

M07

Speakers: Hermann Härtig, TU Dresden, DE Adam Lackorzynski, Kernkonzept GmbH, DE Carsten Weinhold, TU Dresden, DE Björn Döbel, TU Dresden, DE

Modern embedded systems contain an increasing amount of software components with differing requirements in terms of real-time guarantees, security isolation, and reliability. In order to reduce production cost it is desirable to consolidate many such applications into a single hardware platform. Such consolidation requires an operating system that suits these differing application requirements. L4/Fiasco.OC is a microkernel operating system developed as a research project at TU Dresden and now commercially supported by Kernkonzept GmbH. The operating system has been constantly evolved for the past 15 years to accomodate real-time, security, and reliability use cases. Commercially, the microkernel is the foundation of Deutsche Telekom's SIMKo3 high-security smartphone, which was certified for German Government use in September 2013. This tutorial will give an insight into Fiasco.OC's features. Talks by Fiasco.OC developers and researchers will explore usage enarios. A hands-on session lets participants get first-hand experience in Fiasco.OC system setup and application development.

M08

Konferenz 2

×

Konferenz 1

1430 MICROFLUIDIC BIOCHIPS: A VISION FOR MORE THAN MOORE AND BIOCHEMISTRY-ON-CHIP

Speakers: Tsung-Yi Ho, National Cheng Kung University, TW Krishnendu Chakrabarty, Duke University, US

The tutorial offers attendees an opportunity to bridge the semiconductor ICs/system industry with the biomedical and pharmaceutical industries. The tutorial will first describe emerging applications in biology and biochemistry that can benefit from advances in electronic "biochips". The presenters will next describe technology platforms for accomplishing "biochemistry on a chip", and introduce the audience to both the droplet-based "digital" microfluidics based on electrowetting actuation and flow-based "continuous" microfluidics based on microvalve technology. Next, the presenters will describe system-level synthesis includes operation scheduling and resource binding algorithms, and physical-level synthesis includes placement and routing optimizations. In this way, the audience will see how a "biochip compiler" can translate protocol descriptions provided by an end user (e.g., a chemist or a nurse at a doctor's clinic) to a set of optimized and executable fluidic instructions that will run on the underlying microfluidic platform. Testing techniques will be described to detect faults after manufacture and during field operation. A classification of defects will be presented based on data for fabricated chips. Appropriately fault models will be developed and presented to the audience. On-line and off-line reconfiguration techniques will be presented to bypass faults once they are detected. The problem of mapping a small number of chip pins to a large number of array electrodes will also be covered. Finally, sensor feedback-based

cyberphysical adaptation will be covered. A number of case studies based on representative assays and laboratory procedures will be interspersed in appropriate places throughout the tutorial.

M09	Konferenz
	ERGY-EFFICIENT SYSTEM DESIGN THROUGH ERROR-RESILIENT MPUTING
Speakers:	Saibal Mukhopaddhyay, University of Georgia Tech., US

Shidhartha Das, ARM Ltd., GB Anand Raghunathan, Purdue University, US Srimat Chakradhar, NEC Labs, US

This is a half-day tutorial that covers a broad range of technologies for error-resilient computing, and highlights the significant role of resiliency technologies in achieving high energy-efficiency across different levels of abstractions (circuit, hardware architecture and software) in modern computing systems. Safety-margins added to address the impact of rising variations at nanometer geometries incur unacceptable power and performance overheads. Traditional adaptive techniques compensate for some manifestations of these variations, however, they require margins to account for localized and fast-changing variations. The adverse impact of margins has led to a recent research focus on so-called "error-resilient" techniques, both in academia and industry. Resilient techniques permit computational errors to occur at run-time, either by operating without the full setup margin or by deliberately designing for inexact outputs. In lieu of the "always-correct" output as mandated in the traditional model of computing, computing with errors enables significant improvements in energy-efficiency as long as the error-rate and/or the magnitude of errors are sufficiently low. Resilient techniques have wide-ranging applications that span high-performance general-purpose computing to digital signal processing (DSP) algorithms. In this tutorial, we provide an in-depth overview of error-resilient techniques encompassing circuits, micro-architectural, algorithmic and system-architecture aspects. We organize the material into two seqments. In the first, we discuss error-resilient techniques for bit-exact applications where perfect recovery from errors is a key requirement. We briefly review the existing design space for traditional adaptive techniques and motivate the case for error-resiliency by analyzing the additional margins eliminated through explicit error-detection and correction. We then discuss error-detection and recovery approaches for microprocessor pipelines highlighting "Razor" as a specific example. We present measurement results from academia and industry on resilient techniques similar to Razor. The second segment of the tutorial focuses on "approximate" computing; an approach to computing that defines correctness as producing outputs of acceptable "quality". Many applications (such as web search, data analytics, sensor data processing, recognition, mining, and synthesis) have a high degree of intrinsic resilience to their underlying computations being executed incorrectly. We review software, hardware architecture and circuit design techniques to build approximate computing systems. These new techniques significantly improve performance or energy efficiency while ensuring that the results produced are acceptable. We will conclude with a discussion of the key challenges that need to be addressed in order to facilitate a broader adoption of approximate computing.

M10

Konferenz 4

1430 A CYBER-PHYSICAL APPROACH TO MODELING, SIMULATION AND VERIFICATION OF SMART SYSTEMS

Speakers: Davide Quaglia, EDALab s.r.l., IT Dimitris Drogoudis, Agilent, BE Davide Bresolin, University of Bologna, IT

The design of future smart embedded systems should jointly take into account aspects from different domains, such as digital (hardware, software, network) and analog (electronic, electromechanical, etc., as for instance RF, MEMS, power sources, thermal issues, sensors and actuators) so that they can be considered ever more cyber-physical systems. To increase energy efficiency, to fully exploit the potential of current nanoelectronics technologies, as well as to enable the integration of existing/new IPs and "More than Moore" devices, new methodologies and tools for multi-disciplinary and multi-scale modeling, simulation and verification are needed. In engineering practice, the analysis of a complex system is usually carried on through simulation, which allows the engineer to explore one of the possible system executions at a time. Formal verification instead aims at exploring all possible executions, in order to be certain that a property of interest holds in all cases, or conversely acquire information about potential fault cases. Because of their heterogeneous nature, cyberphysical systems have a mixed discrete and continuous behavior, which makes them quite challenging for verification. In this tutorial, we survey state-of-the-art modeling, simulation and verification techniques for cyber-physical systems. The presentations will be accompanied by concrete tool introductions and demonstrations, showing how the presented concepts support improvement of today's state-of-the-art system-level design flow of smart systems. Most of this tutorial is based of the results of the SMAC European project on smart systems design. By scope and contents, this tutorial targets students and researchers belonging to both academia and industry.

M11

30

Konferenz 6

1430 POST-SILICON VALIDATION AND DEBUG: BEST PRACTICES AND DISRUPTIVE INNOVATION

Speakers: Nagib Hakim, Intel Corporation Santa Clara, US Subhasish Mitra, Stanford University, US Amir Nahir, IBM Research Labs Haifa, IL Alan Hu, University of British Columbia, CA

Hardware failures are a growing concern as electronic systems become more complex, interconnected, and pervasive. The complexity challenge is further exacerbated by new ways of improving energy efficiency of electronic systems with the slowdown of CMOS (Dennard) scaling: increasing amounts of cores, uncore components, and accelerators; increasing degrees of adaptivity; and, increasing levels of heterogeneous integration. All these features and their complex interactions make future systems highly vulnerable to design flaws (bugs) that can jeopardize correct system operation and/or introduce security vulnerabilities. Existing validation methods barely cope with today's complexity. Traditional pre-silicon verification alone is no longer adequate. Post-silicon validation involves operating manufactured ICs in actual application environments to detect and fix bugs. Existing post-silicon practices are ad-hoc, and their costs are rising faster than design cost. Effective post-silicon validation requires a radical departure from today's ad-hoc practices to structured techniques. A wide range of topics will be covered in this tutorial, from best practices at leading companies to recent research results that are immediately applicable. Examples include: 1. overview of validation product life cycle; 2. trade-offs in pre- vs. post-silicon validation; 3. validation test content generation using the concept of exercisers; 4. validation infrastructure including triggers, observability structures, and performance monitors; 5. structured and systematic techniques such as QED (Quick Error Detection); 6. coverage metrics; 7. logic and electrical bug validation and debug techniques; 8. formal techniques for post-silicon validation and debug; 9. post-silicon repair, survivability, and resiliency; 10. bug benchmarks and industrial case studies.

M12

Konferenz 5

1430 ALL YOU NEED TO KNOW ABOUT HARDWARE TROJANS AND COUNTERFEIT ICS

Speakers: Mark (Mohammad) Tehranipoor, University of Connecticut, US Domenic Forte, University of Connecticut, US

The migration from a vertical to horizontal business model has made it easier to introduce hardware Trojans and counterfeit electronic parts into the electronic component supply chain. Hardware Trojans are malicious modifications made to original IC designs that reduce system integrity (change functionality, leak private data, etc.). Counterfeit parts are often below specification and/or of substandard quality. The existence of Trojans and counterfeit parts creates risks for the life-critical systems and infrastructures that incorporate them including automotive, aerospace, military, and medical systems. In this tutorial, we will cover (i) Background and motivation for hardware Trojan and counterfeit prevention/detection; (ii) Taxonomies related to both topics; (iii) Existing solutions; (iv) Open challenges; (v) New and unified solutions to address these challenges.

DATE14

Dresden, Germany

24-28 March 2014

technical programme

TUESDAY 25 MARCH, 2014

1.1

Opening Plenary, DATE Awards Ceremony and Keynote Addresses

Grosser Saal 0830 – 1030

0830

0850

0910

0910

0950

1030

WELCOME ADDRESSES

Gerhard Fettweis, DATE 2014 General Chair, TU Dresden, DE Luca Fanucci, DATE 2014 Programme Chair University of Pisa, IT

PRESENTATION OF DISTINGUISHED AWARDS

DATE 2014 BEST PAPER AWARDS

EDAA LIFETIME ACHIEVEMENT AWARD 2014 Rolf Ernst, TU Braunschweig, DE

EDAA OUTSTANDING DISSERTATION AWARDS 2013

ACM SIGDA DISTINGUISHED SERVICE AWARD Peter Marwedel, TU Dortmund, DE

DATE FELLOW AWARD Enrico Macii, Politecnico di Torino, IT

IEEE/CEDA OUTSTANDING SERVICE CONTRIBUTION AWARD 2013 Enrico Macii, Politecnico di Torino, IT

IEEE CS TTTC OUTSTANDING CONTRIBUTION AWARD

Enrico Macii, Politecnico di Torino, IT

IEEE FELLOW AWARD

Cecilia Metra, University of Bologna, IT

KEYNOTE ADDRESSESS

SYSTEM DESIGN CHALLENGES FOR NEXT GENERATION WIRELESS AND EMBEDDED SYSTEMS

David Fuller, National Instruments, US

THE GROWING IMPORTANCE OF MICROELECTRONICS FROM A FOUNDRY PERSPECTIVE

*

Gerd Teepe, GLOBALFOUNDRIES, DE

EXHIBITION AND COFFEE BREAK in Exhibition Area

2.1

EXECUTIVE SESSION: How to Handle Today's Design Complexity

Saal 1 1130 - 1300

Organiser: Yervant Zorian, Fellow & Chief Architect, Synopsys, US Executives: Sanjive Agarwala, Fellow & Silicon Director, Texas Instruments, US Paul Lo, Senior Vice President, Synopsys, US

FCHNTCA technical sessions

Rainer Kress, Head Design Methodology, Infineon, DE Leon Stock, Vice President, IBM, US Sanjiv Taneja, Vice President, Cadence, US

The widening gap between growing SOC complexity and designer productivity limits traditional chip design methods and flows. This results in several new approaches and innovative methods that work to elevate the limitations of different aspects of complex SOC design. Executives in this session will discuss the impact of complexity and the new opportunities it may bring in designing today's SOC.

2.2

LUNCH BREAK in Exhibition Area

Panel: Emerging vs. Established Technologies: a Two Sphinxes' Riddle at the Crossroads?

Konferenz 6 1130 – 1300

Organiser: Marco Casale-Rossi, Synopsys Inc., US Chair: Giovanni De Micheli, EPFL, CH

Crossroads have always been challenging: they require a decision; in Egyptian and Greek mythology they were often guarded by two sphinxes trying to cheat the traveler with their riddles. The two sphinxes, the knight and the knave, the lady and the tiger, are just few instances of difficult puzzles that have kept logicians and mathematicians busy for the last 5,000 years. Today, you are walking down Moore's Law road when you come to a crossroads: one road brings you into the land of emerging technologies: 14, 10 and 7 nanometer, FD-SOI, FinFET, 3D-IC,... beyond and below; the other road holds you into the land of established technologies: 28, 40, 65, and 90 nanometers, possibly even above, A&M/S, MEMS,... Choosing the right road is critical to lead your project and your company to success, but making the right decision is increasingly difficult, as it encompasses complex technical and economic considerations. However, unlike the mythological traveler, you won't run into the sphinxes but, rather, into some of our industry best experts; unlike the sphinxes, they will strive to provide you with honest advice about the "road conditions", and you are allowed to ask multiple questions to them to figure out which road is the best for you.

Panelists: Rob Aitken, ARM Ltd., US Antun Domic, Synopsys Inc., US Manfred Horstmann, GLOBALFOUNDRIES, DE Robert Hum, Mentor Graphics Corp., US Philippe Magarshack, STMicroelectronics, FR 2.3

1200

Making automotive systems safer and more energy efficient

Konferenz 1 1130 – 1300

Chair: Bart Vermeulen, NXP, NL Co-Chair: Sebastian Steinhorst, TUM-CREATE, SG

With the transition from hydraulic and mechanical automotive systems to electronic systems, the requirements on safety and energy efficiency are becoming increasingly important. The papers in this session address these issues by presenting robustness improvements at component and system level, advanced energy management at network level, and multi-variant design space exploration.

1130	EMULATION-BASED ROBUSTNES AUTOMOTIVE SMART-POWER IC
	Manuel Harrant ¹ , Thomas Nirmai

SS ASSESSMENT FOR S

ier¹, Jerome Kirscher¹, Christoph Grimm² and Georg Pelz¹

¹Infineon Technologies AG, DE; ²TU Kaiserslautern, DE

STARTUP ERROR DETECTION AND CONTAINMENT TO IMPROVE THE ROBUSTNESS OF HYBRID FLEXRAY NETWORKS

Alexander Kordes¹, Bart Vermeulen², Abhijit Deb² and Michael Wahl¹

¹University of Siegen, DE; ²NXP Semiconductors, NL

1230 A SELF-PROPAGATING WAKEUP MECHANISM FOR POINT-TO-POINT NETWORKS WITH PARTIAL NETWORK SUPPORT

Jan Reinke Seyler¹, Thilo Streichert¹, Juri Warkentin¹, Matthias Spägele¹, Michael Glaß² and Jürgen Teich²

¹Daimler AG, DE: ²University of Erlangen-Nuremberg, DE

MULTI-VARIANT-BASED DESIGN SPACE EXPLORATION FOR AUTOMOTIVE EMBEDDED SYSTEMS

Sebastian Graf¹, Michael Glaß¹, Jürgen Teich¹ and Christoph Lauer²

¹University of Erlangen-Nuremberg, DE; ²AUDI AG Ingolstadt, DE

IP1-1, IP1-2

1300

IPS

1245

LUNCH BREAK in Exhibition Area

2.4 Modern Challenges in Analog and **Mixed-Signal Design**

Konferenz 2 1130 - 1300

Chair: Georges Gielen, KU Leuven, BE Co-Chair: Günhan Dündar, Bogazici University, TR

The session addresses complex challenges in analogue and mixed-signal modeling and design. The regular papers present a novel, zonotope based approach to non-linear macromodeling and a new layout technique in analogue IC design that avoids failures due to IR-drop and electromigration. The two short papers discuss new mechanisms

to select solutions from multi-dimensional Pareto-optimal fronts and efficient recording of activities in CMOS neural networks.

1130

ELECTROMIGRATION-AWARE AND IR-DROP AVOIDANCE ROUTING IN ANALOG MULTIPORT TERMINAL STRUCTURES

Ricardo Martins, Nuno Lourenco, António Canelas and Nuno Horta, Instituto de Telecomunicações, Instituto Superior Técnico – TU Lisbon, PT

ZONOTOPE-BASED NONLINEAR MODEL ORDER REDUCTION FOR FAST PERFORMANCE BOUND ANALYSIS OF ANALOG CIRCUITS WITH MULTIPLE-INTERVAL-VALUED PARAMETER VARIATIONS

Yang Song, Sai Manoj PD and Hao Yu, Nanyang Technological University, SG

1230

1200

IMPLEMENTATION ISSUES IN THE HIERARCHICAL COMPOSITION OF PERFORMANCE MODELS OF ANALOG CIRCUITS

Manuel Velasco-Jiménez, Rafael Castro-López, Elisenda Roca and Francisco Fernández, IMSE-CNM, CSIC and Universidad de Sevilla, ES

1245

MODELING OF AN ANALOG RECORDING SYSTEM DESIGN FOR ECOG AND AP SIGNALS

Nils Heidmann, Nico Hellwege, Tim Hoehlein, Thomas Westphal, Dagmar Peters-Drolshagen and Steffen Paul University of Bremen, DE

IPS 1300

IP1-3, IP1-4, IP1-5, IP1-6, IP1-7

LUNCH BREAK in Exhibition Area

2.5

Low-Power and Efficient Architectures

Konferenz 3 1130 – 1300

Chair: Co-Chair:

Cristina Silvano, Politecnico di Milano, IT Todd Austin, University of Michigan, US

This session presents three papers on energy efficiency in memoryintensive systems. The first paper aims at energy-efficient scheduling of cooperative-thread arrays on GPGPUs for memory intensive workloads through throttling of warps on different cores. The second paper leverages the application-specific knowledge of the next-generation parallelized high-efficiency video encoder to design a distributed scratchpad memory system with adaptive SPM data allocation and power management. The third paper explores the feasibility of non-volatile memories for instruction caches to improve energy efficiency. To handle the write delay and energy issues of NVMs, an analysis and extensions to the miss status handling registers are proposed.

1130

ENERGY-EFFICIENT SCHEDULING FOR MEMORY-INTENSIVE **GPGPU WORKLOADS**

Seokwoo Song¹, Minseok Lee¹, John Kim¹, Woong Seo², Yeongon Cho² and Soojung Ryu² ¹KAIST, KR; ²Samsung, KR

35

24-28 March 2014

DATE14

DSVM: ENERGY-EFFICIENT DISTRIBUTED SCRATCHPAD VIDEO

MEMORY ARCHITECTURE FOR THE NEXT-GENERATION HIGH

EFFICIENCY VIDEO CODING

1200

Konferenz 5 1130 - 1300

Yield and Reliability for Robust

2.7

Systems

DATE14

	Felipe Sampaio', Muhammad Shafique', Bruno Zatt', Sergio	Konterenz 5	1130 - 1300
	Bampi ⁴ and Jörg Henkel ² ¹ Federal University of Rio Grande do Sul, BR; ² Karlsruhe Institute of Technology (KIT), DE; ³ Federal University of	Chair: Joan Figueras, UPC, ES Co-Chair: Jose Pineda de Gyvez, NXP, NL	
	Pelotas, BR; "Federal University of Rio Grande do Sul, BR	Robustness is increasingly a requirement for SOCs and me effects such as wearout, BTI, and soft errors are importa	
1230	FEASIBILITY EXPLORATION OF NVM BASED I-CACHE THROUGH MSHR ENHANCEMENTS	er as part of design. Another important component of rol	bust design
	Manu Komalan ¹ , José Ignacio Gómez Pérez ² , Christian Tenllado², Praveen Raghavan³, Matthias Hartmann³ and Francky Catthoor³	is tolerance of rare events. Understanding design robust predict and enhance yield.	liess lietps
	¹ IMEC, UCM(Universidad Complutense de Madrid), ES; ² Universidad Complutense de Madrid, ES; ³ IMEC, BE	1130 COMPREHENSIVE ANALYSIS OF ALPHA AND NEUT PARTICLE-INDUCED SOFT ERRORS IN AN EMBEDD	
IPS	IP1-8, IP1-9, IP1-10, IP1-11	PROCESSOR AT NANOSCALES	
1300	LUNCH BREAK in Exhibition Area	Mojtaba Ebrahimi ¹ , Adrian Evans ² , Mehdi B. Tahoo Seyyedi ¹ , Enrico Costenaro ³ and Dan Alexandrescu ¹ Karlsruhe Institute of Technology, DE; ² iRoC Tech ³ iRoC Technologies, France, FR	l ³
2.6	Real-Time memory hierarchies	1200 BIAS TEMPERATURE INSTABILITY ANALYSIS OF FI SRAM CELLS	INFET BASED
Chair: Co-Chai	Konferenz 4 1130 – 1300 Benny Akesson, CTU Prague, CZ Marco Di Natale, Scuola Superiore Sant'Anna, IT	SEYAB KHAN¹, Innocent Agbo², Said Hamdioui³, H: Ben Kaczer⁴, Praveen Raghavan⁵ and Francky Cattl ¹Technical University Delft, NL; ²TU Delft, NL; ³Del	hoor ⁴
memory	ers in this session deal with analysis and management of hierarchies for complex real-time systems, both from the nistic and the probabilistic point of view.	of Technology, NL; "IMEC, BE; "IMEC, BE 1230 SSFB: A HIGHLY-EFFICIENT AND SCALABLE SIMU REDUCTION TECHNIQUE FOR SRAM YIELD ANALY:	
1130	ON THE CORRECTNESS, OPTIMALITY AND PRECISION OF STATIC PROBABILISTIC TIMING ANALYSIS	Manish Rana and Ramon Canal, Universitat Polited Catalunya, ES	cnica de
	Sebastian Altmeyer ¹ and Robert Davis ²	IPS IP1-12, IP1-13, IP1-14	
	¹ University of Amsterdam, NL; ² University of York, GB	1300 LUNCH BREAK in Exhibition Area	
1200	WCET-CENTRIC DYNAMIC INSTRUCTION CACHE LOCKING		
	Huping Ding ¹ , Yun Liang ² and Tulika Mitra ¹ ¹ School of Computing, National University of Singapore, SG; ² Center for Energy-efficient Computing and Applications, School of EECS, Peking University, CN	2.8 Hot Topic: Technology Trans towards Horizon 2020	fer
1230	MINIMIZING STACK MEMORY FOR HARD REAL-TIME	Exhibition Theatre	1130 - 1300
	APPLICATIONS ON MULTICORE PLATFORMS	Organiser: Rainer Leupers, RWTH Aachen, DE	
1245	Chuansheng Dong and Haibo Zeng, McGill University, CA TIME-PREDICTABLE EXECUTION OF MULTITHREADED	Chair: Norbert Wehn, TU Kaiserslautern, DE	
1245	APPLICATIONS ON MULTICORE SYSTEMS	European research projects produce many excellent resul quality of research papers at DATE and other major Europ	
	Ahmed Alhammad and Rodolfo Pellizzoni, University of Waterloo, CA	ences is often outstanding. But how many academic rese in computing technologies and EDA actually make it into	earch results industrial
1300	LUNCH BREAK in Exhibition Area	practice? In the context of the transition into the Horizo framework program, the European research community is	

investigating novel ways of stimulating additional academia-industry technology transfer. This special session contributes by discussing concrete transfer experiences and new concepts. Furthermore it will exemplify several success stories from both academic and indus-

THE TETRACOM APPROACH TO TECHNOLOGY TRANSFER

Rainer Leupers, RWTH Aachen University, DE

trial perspectives.

1130

*

*

*

TUESDAY

1145

TUESDAY

DATE14
Dresden, Germany
24-28 March 2014

	Marco Roodzant, ACE Associated Compiler Experts bv, NL
1200	SUCCESSFUL TECHNOLOGY TRANSFER – SHARING OF EXPERIENCE
	Johannes Stahl, Synopsys Inc., US
1215	FROM RESEARCH TO MARKET: CASE STUDIES IN THE FIELD OF INNOVATIVE INTEGRATED ARCHITECTURES
	Luca Fanucci, University of Pisa, IT
1230	OPEN SOURCE TECHNOLOGY TRANSFER: SCENARIOS AND VALUE CREATION
	Albert Cohen, INRIA, FR
1245	SUPPORTING INTERNATIONAL TECHNOLOGY TRANSFER: OBJECTIVES AND OBSTACLES
	Bernd Janson, Consultant, DE
1300	LUNCH BREAK in Exhibition Area

LEVERAGING EUROPEAN RESEARCH TO CREATE VALUE

3.1

EXECUTIVE SESSION: Advanced **Technology Challenges & Opportunities**

Saal 1 1430 - 1600

Organiser: Yervant Zorian, Fellow & Chief Architect, Synopsys, US Executives: Giorgio Cesana, Director, STMicroelectronics, FR Joachim Kunkel, Senior Vice President & GM, Synopsys, US Rudy Lauwereins, VP, IMEC, BE Maria Merced, President, TSMC, NL Gerd Teepe, VP, GLOBALFOUNDRIES, DE

The continuous technology scaling and their new applications are dramatically impacting the semiconductor industry. This may also significantly affect the dependency between eco-system players necessitating smooth interdependency between them. The executives in this session will discuss upcoming innovations in the semiconductor industry and their impact on the solutions offered by the eco system players.

1600

COFFEE BREAK in Exhibition Area

3.2

Panel: The World Is Going... Analog & Mixed-Signal! What about EDA?

Konferenz 6 1430 - 1600

Organiser: Marco Casale-Rossi, Synopsys Inc., US Chair: Pietro Palella, STMicroelectronics, IT

Contrarily to a common belief, the world is not going digital! Analog and mixed-signal electronics is more and more important and yet pervasive. This is due both to the increasing systems integration, by nature leading to heterogeneity, and to the complex, digital computing functions being complemented by scores of on-chip analog functions, interfacing/interacting with people, environment, and other systems. Specialty silicon foundries are now stable members of top

3.3

1600

ment?

Secure Hardware Primitives and Implementations

ten revenue rankings. This technology trend demands for more design automation in both implementation and verification domains. Lossless interfaces between digital and analog design environments,

multi-technology support, mixed-signal simulation engines - but also debugging aids - are no longer a nice to have. According to IBS, the cost of implementing and verifying the mixed-signal functions is generally over 50% of the design costs even though the mixed-signal

transistors can be as low as 3% of the total! What are the critical reguirement, moving forward, and what is EDA industry doing to serve the needs of this increasingly important semiconductor industry seq-

> Robert Hum, Mentor Graphics Corp., US Rainer Kress, Infineon Technologies, DE

Paul Lo, Synopsys Inc., US

COFFEE BREAK in Exhibition Area

Konferenz 1 1430 – 1600

Chair: Paolo Maistri, TIMA, FR Patrick Schaumont, Virginia Tech, US Co-Chair:

Panelists: Mario Anton, Micronas, DE Ori Galzur, TowerJazz, IL

System designers need secure building blocks for robust system protection against physical attacks. This session presents novel hardware designs and analysis on code-based cryptography, random number generators and IP protection mechanisms using watermarking.

1430

LIGHTWEIGHT CODE-BASED CRYPTOGRAPHY: OC-MDPC MCELIECE ENCRYPTION ON RECONFIGURABLE DEVICES

Ingo von Maurich and Tim Güneysu, Ruhr-Universität Bochum, DE

1500

1530

ON THE ASSUMPTION OF MUTUAL INDEPENDENCE OF JITTER REALIZATIONS IN P-TRNG STOCHASTIC MODELS.

Patrick Haddad¹, Yannick Teglia¹, Florent BERNARD² and Viktor Fischer³

¹ST Microelectronics, FR; ²Laboratory Hubert Curien, University of Lyon, UJM Saint-Etienne, FR; ³Hubert Curien Laboratory, Jean Monnet University, FR

CLOCK-MODULATION BASED WATERMARK FOR PROTECTION OF EMBEDDED PROCESSORS

Jedrzei Kufel¹, Peter Wilson¹, Stephen Hill², Bashir Al-Hashimi¹, Paul N. Whatmough³ and James Myers³ ¹University of Southampton, GB ²ARM, US ³ARM, GB

1600

COFFEE BREAK in Exhibition Area

3.4

DATE14

Dresden, Germany

24-28 March 2014

Modeling and Optimization of Power Distribution Networks

Konferenz 2 1430 – 1600

Chair: Luca Daniel, MIT, US Co-Chair: Stefano Grivet-Talocia, Politecnico di Torino, IT

The performance and robustness of 3D power distribution networks is of critical importance for state of the art electronic designs. The papers in this session discuss new modeling and optimization approaches for their efficient characterization and robust design, including order reduction, variability impact, via planning, decoupling capacitor selection, and thermal effects.

1430

1500

1530

1545

SENSITIVITY-BASED WEIGHTING FOR PASSIVITY ENFORCEMENT OF LINEAR MACROMODELS IN POWER INTEGRITY APPLICATIONS

Andrea Ubolli¹, Stefano Grivet-Talocia¹, Michelangelo Bandinu² and Alessandro Chinea²

¹Politecnico di Torino, IT; ²IdemWorks s.r.l., IT

EFFICIENT ANALYSIS OF VARIABILITY IMPACT ON INTERCONNECT LINES AND RESISTOR NETWORKS

Jorge Fernandez Villena¹ and Luis Miguel Silveira² ¹INESC ID, PT; ²INESC ID/IST - Lisbon University, PT

IMPLICIT INDEX-AWARE MODEL ORDER REDUCTION FOR RLC/ RC NETWORKS

Nicodemus Banagaaya¹, Giuseppe Ali 12 , Wil . H. A. Schilders 1 and Caren Tischendorf 3

¹Eindhoven University of Technology, NL; ²University of Calabria and INFN, Gruppo collegato di Cosenza, IT; ³Institute of Mathematics, Humboldt-Universität zu Berlin, DE

P/G TSV PLANNING FOR IR-DROP REDUCTION IN 3D-ICS

Shengcheng Wang, Farshad Firouzi, Fabian Oboril and Mehdi Tahoori

Karlsruhe Institute of Technology, DE

IPS IP1-15, IP1-16, IP1-17, IP1-18

COFFEE BREAK in Exhibition Area

3.5

1600

Robust Architectures Konferenz 3 1430 - 1600

Chair: Todd Austin, University of Michigan, US Co-Chair: Muhammad Shafique, Karlsruhe Institute of Technology, DE

This session presents the design of novel architectures to support real-time and secure systems. The first paper couples a time-division multiplexed NoC with a real-time memory controller to design a costeffective real-time system with improved worst-case latency at reduced area and power consumption. The next paper proposes bus designs for multi-cores that are analyzable for probabilistic timing analysis. The final paper in this session designs a lightweight hardware solution using lockstep shadow thread execution to detect and prevent code injection attacks.

COUPLING TDM NOC AND DRAM CONTROLLER FOR COST AND PERFORMANCE OPTIMIZATION OF REAL-TIME SYSTEMS

Manil Dev Gomony¹, Benny Akesson² and Kees Goossens³ ¹Eindhoven University of Technology, NL; ²Czech Technical University in Praque, CZ; ³Eindhoven University of Technology, NL

1530

BUS DESIGNS FOR TIME-PROBABILISTIC MULTICORE PROCESSORS

Javier Jalle¹, Leonidas Kosmidis¹, Jaume Abella², Eduardo Quinones¹ and Francisco Cazorla³ ¹Barcelona Supercomputing Center, ES; ²Barcelona Supercomputing Center (BSC-CNS), ES; ³Barcelona Supercomputing Center and IIIA-CSIC, ES

PROGRAMMABLE DECODER AND SHADOW THREADS: TOLERATE REMOTE CODE INJECTION EXPLOITS WITH DIVERSIFIED REDUNDANCY

Weidong Shi¹, Ziyi Liu¹, Shouhuai Xu² and Zhiqiang Lin³ ¹University of Houston, US; ²University of Texas at San Antonio, US; ³University of Texas at Dallas, US

IP1-19, IP1-20

COFFEE BREAK in Exhibition Area

3.6 Cyber Physical Systems: Security and Co-design

Konferenz 4 1430 - 1600

Chair: Rolf Ernst, Technische Universitaet Braunschweig, DE Co-Chair: Anuradha Annaswamy, MIT, US

This session showcases recent results in cybersecurity and codesign in CPS. The first paper analyzes a stealth cyberattack scenario where a distributed sensor system is disturbed by an attacker who tries to reduce the sensor fusion quality and suggests an algorithmic approach to increase robustness against this attack. The second paper addresses the joint design of a feedback controller and a server-based resource reservation mechanism to guarantee closed-loop stability. The third paper describes a codesign approach formally guaranteeing control robustness for a communication channel with a bounded number of frame losses.

1430

ATTACK-RESILIENT SENSOR FUSION

Radoslav Ivanov, Miroslav Pajic and Insup Lee, University of Pennsylvania, US

1500

1530

⁵MIT, US

BANDWIDTH-EFFICIENT CONTROLLER-SERVER CO-DESIGN WITH STABILITY GUARANTEES

Amir Aminifar¹, Enrico Bini², Petru Eles¹ and Zebo Peng¹ ¹Linkoping University, SE; ²Lund University, SE

FAULT-TOLERANT CONTROL SYNTHESIS AND VERIFICATION OF DISTRIBUTED EMBEDDED SYSTEMS

Matthias Kauer¹, Damoon Soudbakhsh², Dip Goswami³, Samarjit Chakraborty⁴ and Anuradha Annaswamy⁵ ¹TUM CREATE Ltd., SG; ²Masschussetts Institute of Technology, US; ³Eindhoven University of Technology, NL; ⁴TU Munich, DE;

TUFSDAY

- IP1-21, IP1-22, IP1-23
 - **COFFEE BREAK** in Exhibition Area

3.7

On line Strategies for Reliability

Konferenz 5 1430 - 1600

Chair: Fabrizio Lombardi, Northwestern University, US **Co-Chair:** Jie Han, University of Alberta, CA

This section presents different approaches to improve reliability of circuits and systems by using on line techniques. It shows different methods that can be applied to caches, processors and multicore architectures.

1500

1530

1600

SPATIAL PATTERN PREDICTION BASED MANAGEMENT OF FAULTY DATA CACHES

Georgios Keramidas¹, Michail Mavropoulos², Anna Karvouniari² and Dimitris Nikolos²

¹Researcher, Univerity of Patras, GR; ²University of Patras, GR

COMBINED DVFS AND MAPPING EXPLORATION FOR LIFETIME AND SOFT-ERROR SUSCEPTIBILITY IMPROVEMENT IN MPSOCS

Anup Das¹, Akash Kumar¹, Bharadwaj Veeravalli¹, Cristiana Bolchini² and Antonio Miele²

¹National University of Singapore, SG; ²Politecnico di Milano, IT

DARP: DYNAMICALLY ADAPTABLE RESILIENT PIPELINE DESIGN IN MICROPROCESSORS

Hu Chen, Sanghamitra Roy and Koushik Chakraborty, Utah State University, US

COFFFF BRFAK in Exhibition Area

3.8

Hot Topic: Mission Profile Aware **Design – The Solution for** Successful Design of Tomorrows **Automotive Electronics**

Exhibition Theatre 1430 - 1600

-

Organisers: Goeran Jerke, Robert Bosch GmbH, DE Oliver Bringmann, University of Tuebingen, DE Goeran Jerke, Robert Bosch GmbH, DE Chair: Co-Chair: Oliver Bringmann, University of Tuebingen, DE

In order to benefit from modern automotive semiconductor technologies, application robustness must now be considered as a design target. This includes the consequent consideration of environmental stress conditions and functional loads, which are formalized in socalled "mission profiles". We introduce the motivation to use mission profiles from an OEM and Tier n perspective. Additionally, we introduce the mission profile aware design flow and present several application scenarios.

1500

MISSION PROFILES – SOLUTION OR CHALLENGE? THE OEM PERSPECTIVE

Ulrich Abelein, AUDI AG, DE

MISSION PROFILE AWARE IC DESIGN - A CASE STUDY

Goeran Jerke¹ and Andrew Kahng² ¹Robert Bosch GmbH, DE; ²University of California, San Diego, US

MISSION PROFILE AWARE ROBUSTNESS ASSESSMENT OF AUTOMOTIVE POWER DEVICES

Thomas Nirmaier¹, Andreas Burger², Manuel Harrant¹, Alexander Viehl², Oliver Bringmann³, Wolfgang Rosenstiel³ and Georg Pelz¹ ¹Infineon Technologies AG, DE; ²FZI Research Center for Information Technology, DE; ³University of Tuebingen, DE

APPLICATION OF MISSION PROFILES TO ENABLE CROSS-DOMAIN CONSTRAINT-DRIVEN DESIGN

Carolin Katzschke¹, Marc-Philipp Sohn¹, Markus Olbrich¹, Volker Meyer zu Bexten², Markus Tristl² and Erich Barke¹ ¹Institute of Microelectronic Systems, Leibniz Universität Hannover, DE: ²Infineon Technologies AG, DE

COFFEE BREAK in Exhibition Area

IP1

Interactive Presentations

Conference Level, Foyer 1600 - 1630

Interactive Presentations run simultaneously during a 30-minute slot. A poster associated to the IP paper is on display throughout the afternoon. Additionally, each IP paper is briefly introduced in a oneminute presentation in a corresponding regular session, prior to the actual Interactive Presentation.

IP1-2

IP1-3

IP1-4

IP1-5

SAFE: SECURITY-AWARE ELEXRAY SCHEDULING ENGINE

Gang Han¹, Haibo Zeng², Yaping Li³ and Wenhua Dou¹ ¹National University of Defense Technology, CN; ²McGill University, CA; ³The Chinese University of Hong Kong, CN

TRANSIENT ERRORS RESILIENCY ANALYSIS TECHNIQUE FOR AUTOMOTIVE SAFETY CRITICAL APPLICATIONS

Sujan Pandey and Bart Vermeulen, NXP Semiconductors, NL

MODEL BASED HIERARCHICAL OPTIMIZATION STRATEGIES FOR ANALOG DESIGN AUTOMATION

Engin Afacan¹, Gunhan Dundar¹, Faik Baskaya¹, Simge Ay¹ and Francisco Fernandez²

¹Bogazici University, TR; ²Universidad de Sevilla, TR

A NOVEL LOW POWER 11-BIT HYBRID ADC USING FLASH AND **DELAY LINE ARCHITECTURES**

Hsun-Cheng Lee and Jacob Abraham, University of Texas, Austin, US

SEMI-SYMBOLIC ANALYSIS OF MIXED-SIGNAL SYSTEMS INCLUDING DISCONTINUITIES

Carna Radoiicic, Christoph Grimm, Javier Moreno and Xiao Pan, TU Kaiserslautern, DE

DATE14

TUFSDAY

IP1-6

COST-EFFECTIVE DECAP SELECTION FOR BEYOND DIE POWER INTEGRITY

Yi-En Chen¹, Tu-Hsung Tsai¹, Shi-Hao Chen² and Hung-Ming Chen¹

¹Department of Electronics Engineering National Chiao Tung University Hsinchu, Taiwan 300, R.O.C., TW; ²Global Unichip Corp, Hsinchu, Taiwan, TW

IP1-17

IP1-18

IP1-19

IP1-20

IP1-16

CHARACTERIZING POWER DELIVERY SYSTEMS WITH ON/OFF-CHIP VOLTAGE REGULATORS FOR MANY-CORE PROCESSORS

Xuan Wang, Jiang Xu, Zhe Wang, Kevin J. Chen, Xiaowen Wu and Zhehui Wang, HKUST, HK

MASK-COST-AWARE ECO ROUTING

EXPLOITING NARROW-WIDTH VALUES FOR IMPROVING NON-VOLATILE CACHE LIFETIME

Guangshan Duan and Shuai Wang, Nanjing University, CN

PARTIAL-SET: WRITE SPEEDUP OF PCM MAIN MEMORY

Li Bing¹, Shan Shuchang², Hu Yu² and Li XiaoWei³ 1ICT.UCAS, CN: 2ICT.CAS, CN: 3ICT.CAS, CN

GARBAGE COLLECTION FOR MULTI-VERSION INDEX ON FLASH MEMORY

Kam-Yiu Lam¹, Jian-Tao Wang¹, Yuan-Hao Chang², Jen-Wei Hsieh³, Po-Chun Huang⁴, Chung Keung Poon⁵ and ChunJiang Zhu¹

¹City University of Hong Kong, HK: ²Academia Sinica, TW: ³National Taiwan University of Science and Technology, TW; ⁴Acadmia Sinica, TW; ⁵City University of Hong Kong, TW

D2CYBER: A DESIGN AUTOMATION TOOL FOR DEPENDABLE CYBERCARS

Arslan Munir and Farinaz Koushanfar, Rice University, US

CONTRACT-BASED DESIGN OF CONTROL PROTOCOLS FOR SAFETY-CRITICAL CYBER-PHYSICAL SYSTEMS

Pierluigi Nuzzo, John Finn, Antonio Iannopollo and Alberto Sangiovanni-Vincentelli, University of California at Berkeley, US

A FAULT DETECTION MECHANISM IN A DATA-FLOW SCHEDULED IP1-24 MULTITHREADED PROCESSOR

Jian Fu¹, Qiang Yang¹, Raphael Poss¹, Chris Jesshope¹ and Chunyuan Zhang² ¹University of Amsterdam, NL; ²National University of Defense

Technology, CN

After the last IP Session of each day, the "Best IP of the Day" will be awarded.

³NTHU, TW

NOVEL CIRCUIT TOPOLOGY SYNTHESIS METHOD USING CIRCUIT

FEATURE MINING AND SYMBOLIC COMPARISON Cristian Ferent and Alex Doboli, Stony Brook University, US

44 www.date-conference.com IP1-21

IP1-23

4.1

DATE14

Dresden, Germany

24-28 March 2014

EXECUTIVE SESSION: Addressing Challenges of Reliable Chips

Saal 1 1700 - 1830

Organiser: Yervant Zorian, Fellow & Chief Architect, Synopsys, US Executives: Dan Alexandrescu, President & CEO, iROC Technologies, FR Robert Aitken, Fellow, ARM, US Robert Hum, GM & VP, Mentor Graphics, US Ronald Martino, VP Microcontroller, Freescale, US

While today's SOCs systematically use semiconductor production quality assessment and optimization solutions, meeting end-product requirements for reliability and availability augments the need to prepare the SOC design in advance to address such requirements. The speakers in this executive session will address the current trends and challenges in the semiconductor reliability and discuss the level of readiness needed in a chip to meet today's SOC requirements.

1830

EXHIBITION RECEPTION IN SEVERAL SERVING POINTS INSIDE THE EXHIBITION AREA (TERRACE LEVEL)

4.2

Hot Topic: Multicore Systems in Safety Critical Electronic Control Units for Automotive and Avionics

Konferenz 6 1700 – 1830

Organisers	: Jürgen Becker, KIT, DE
	Oliver Sander, KIT, DE
Chair:	Jürgen Becker, KIT, DE
Co-Chair:	Oliver Sander, KIT, DE

Future applications in automotive and avionics show an ever increasing demand of computational processing power. The use of multicore devices is now emerging in embedded electronics. However these solutions are not directly applicable because of technical requirements that come along with the domain of safety critical and mixed critical applications, such as in automotive or avionics. The major challenge for deployment of multicore devices in safety critical applications such as automotive or avionics, is the lack of determinism and support of segregation due to shared resources. The goal of this session is to present the challenges that arise from the use of multicore devices in embedded safety-critical systems and mixed critical systems.

1800

46

AUTOSAR AND MULTICORE

Stefan Kuntz¹ and Rolf Schneider² ¹Continental Automotive GmbH, DE; ²AUDI AG, DE

CONCEPTS TO VALIDATE THE SAFE APPLICATION OF MULTICORE 1730 ARCHITECTURES IN THE AVIONICS DOMAIN

Ottmar Bender¹, Laurent Dieudonné² ¹Cassidian Electronics, DE; ²Liebherr-Aerospace Lindenbarg GmbH, DE

MONITORING AND WCET ANALYSIS IN COTS MULTI-CORE-SOC-BASED MIXED-CRITICALITY SYSTEMS

Jan Nowotsch¹, Michael Paulitsch², Arne Henrichsen³, Werner Pongratz³ and Andreas Schacht³ ¹EADS Innovation Works, DE; ²EADS Innovation Work, DE; ³Cassidian, DE

815	

HARDWARE VIRTUALIZATION SUPPORT FOR SHARED **RESOURCES IN MIXED-CRITICALITY MULTICORE SYSTEMS**

Oliver Sander¹, Timo Sandmann¹, Viet Vu Duy¹, Steffen Bähr¹, Falco Bapp¹, Juergen Becker¹, Hans Ulrich Michel², Dirk Kaule², Daniel Adam², Enno Luebbers³, Jürgen Hairbucher³, Andre Richter⁴, Christian Herber⁴ and Andreas Herkersdorf⁴ ¹KIT, DE; ²BMW F+T, DE; ³Intel GmbH, DE; ⁴Technische Universität München, DE

1830

EXHIBITION RECEPTION IN SEVERAL SERVING POINTS INSIDE

THE EXHIBITION AREA (TERRACE LEVEL)

4.3

Secure Device Identification

Chair: Tim Gueneysu, RUB, DE

Konferenz 1 1700 - 1830

Physically Unclonable Functions (PUF) have received much attention for fingerprinting of electronic devices. This session presents novel constructions and threats on Ring-Oscillator-based and Sense-Amplifier-based PUFs.

	MD. TAUHIDUR RAHMAN ¹ , Domenic Forte ¹ , Jim Fahrny ² and Mohammad Tehranipoor ¹ ¹ University of Connecticut, US; ² Comcast, US
1730	AN EFFICIENT RELIABLE PUF-BASED CRYPTOGRAPHIC KEY GENERATOR IN 65NM CMOS
	Mudit Bhargava¹ and Ken Mai² ¹ARM, US; ²Carnegie Mellon University, US
1800	INCREASING THE EFFICIENCY OF SYNDROME CODING FOR PUFS WITH HELPER DATA COMPRESSION
	Matthias Hiller and Georg Sigl, Institute for Security in Information Technology; Technische Universität München, DE
1815	KEY-RECOVERY ATTACKS ON VARIOUS RO PUF CONSTRUCTIONS VIA HELPER DATA MANIPULATION
	Jeroen Delvaux ¹ and Ingrid Verbauwhede ² ¹KU Leuven, BE; ²KU Leuven - COSIC, BE
1830	EXHIBITION RECEPTION IN SEVERAL SERVING POINTS INSIDE THE EXHIBITION AREA (TERRACE LEVEL)

"Almost there" emerging technologies

Konferenz 2 1700 - 1830

Chair: Ian O'Connor, University of Lyon, FR Co-Chair: Michael Niemier, University of Notre Dame, US

The three papers in this session all address "nearer-term" emerging technologies. Stochastic computing techniques are becoming increasingly relevant as CMOS becomes more error prone, numerous industrial and academic efforts are targeting 3D integration, and inte-

TUESDAY

grated microfluidics promise to have a profound impact on healthcare and other domains.

1730

1800

1830

IIR FILTERS USING STOCHASTIC ARITHMETIC

Naman Saraf, Kia Bazargan, David J Lilja and Marc D Riedel, University of Minnesota, Twin Cities, US

EFFICIENT TRANSIENT THERMAL SIMULATION OF 3D ICS WITH LIOUID-COOLING AND THROUGH SILICON VIAS

Alain Fourmique, Giovanni Beltrame and Gabriela Nicolescu, Polytechnique Montreal, CA

A LOGIC INTEGRATED OPTIMAL PIN-COUNT DESIGN FOR DIGITAL MICROFLUIDIC BIOCHIPS

Trung Anh Dinh¹, Shigeru Yamashita¹ and Tsung-Yi Ho² ¹Ritsumeikan University, JP; ²National Cheng Kung University, TW

EXHIBITION RECEPTION IN SEVERAL SERVING POINTS INSIDE THE EXHIBITION AREA (TERRACE LEVEL)

4.5

Memory System Architectures

Konferenz 3 1700 - 1830

Chair: Co-Chair:

Muhammad Shafique, Karlsruhe Institute of Technology, DE Cristina Silvano, Politecnico di Milano, IT

The memory sub-system plays an increasingly important role in modern multicore systems. Novel solutions are needed in order to deliver the expected performance improvements with minimal energy overheads. In addition, new solutions should be preferably backward compatible with already existing approaches. In this session we have four papers dealing with different aspects of the memory hierarchy in modern computing systems. ALLARM provides a novel, yet power efficient strategy towards cache coherence to simultaneously improve performance and reduce energy. The next paper in this session presents a novel packet-based interface and compression, which reduces communication overhead. The third paper deals with prefetcher aggressiveness and proposes a sound solution to reduce overall execution time. The last paper of this session proposes a novel extension of the shared L2 cache memory system, providing a very high aggregated bandwidth with a very low impact on L2 cache design complexity or operating frequency.

1700

1730

1800

ACHIEVING EFFICIENT PACKET-BASED MEMORY SYSTEM BY EXPLOITING CORRELATION OF MEMORY REQUESTS

Tianyue Lu, Licheng Chen and Mingyu Chen, Institute of Computing Technology, Chinese Academy of Sciences, CN

ALLARM: OPTIMIZING SPARSE DIRECTORIES FOR THREAD-LOCAL DATA

Amitabha Roy¹ and Timothy Jones² ¹EPFL, CH: ²University of Cambridge, GB

INTRODUCING THREAD CRITICALITY AWARENESS IN PREFETCHER AGGRESSIVENESS CONTROL

Biswabandan Panda and Shankar Balachandran, IIT Madras, IN

A MULTI BANKED - MULTI PORTED - NON BLOCKING SHARED L2 CACHE FOR MPSOC PLATFORMS

Igor Loi and Luca Benini University of Bologna, IT

IP2-2, IP2-3, IP2-4

EXHIBITION RECEPTION IN SEVERAL SERVING POINTS INSIDE THE EXHIBITION AREA (TERRACE LEVEL)

4.6

Code Generation and Optimization for Embedded Platforms

Konferenz 4 1700 – 1830

TUFSDAY

Heiko Falk, Ulm University, DE Chair: Florence Maraninchi, Grenoble IMP/VERIMAG, FR **Co-Chair:**

This session covers the broad spectrum of topics in compilers, code optimization, and validation under consideration of today's embedded platforms. The first paper addresses the automated validation of binary translators. The second paper focusses on the on-device optimization of apps and system libraries of mobile platforms. The third paper deals with the code generation of Android image processing applications for heterogeneous GPU-based architectures. The session is rounded off by short presentations of work-in-progress ideas on model transformation, energy and wear-leveling optimization, and scheduling/register allocation.

1700

FATBIT: FFFFCTIVE AUTOMATED TEST FOR BINARY TRANSLATION WITH HIGH CODE COVERAGE

Hui Guo¹, Zhenjiang Wang¹, Chenggang Wu¹ and Ruining He² ¹Institute of Computing Technology, Chinese Academy of Sciences, CN: ²University of California, San Diego, US

1730

1800

ON-DEVICE OBJECTIVE-C APPLICATION OPTIMIZATION FRAMEWORK FOR HIGH-PERFORMANCE MOBILE PROCESSORS

Garo Bournoutian and Alex Orailoglu, University of California, San Diego, US

CODE GENERATION FOR EMBEDDED HETEROGENEOUS ARCHITECTURES ON ANDROID

Richard Membarth, Oliver Reiche, Frank Hannig and Jürgen Teich, University of Erlangen-Nuremberg, DE

IP2-5, IP2-6, IP2-7, IP2-8

EXHIBITION RECEPTION IN SEVERAL SERVING POINTS INSIDE THE EXHIBITION AREA (TERRACE LEVEL)

special day

SPECIAL DAY Hot Topic: Predictable

Saal 1 0830 - 1000

Organiser: Jürgen Teich, University of Erlangen-Nuremberg, DE Petru Eles, Linkoping University, SE Chair:

WEDNESDAY 26 MARCH, 2014

Multi-Core Computing

* SPECIAL DAY

Co-Chair: Jürgen Teich, University of Erlangen-Nuremberg, DE

The requirement of high performance computing at low power can be met by the parallel execution of an application on a possibly large number of programmable cores. However, the lack of accurate timing properties may prevent parallel execution from being applicable to time-critical applications. This session treats this important problem of time predictability of applications on multi-core platforms by presenting results of the impact of resource sharing on performance, an architecture that has been designed to meet predictability requirements as well as new results on scheduling mixed critical applications on multi-core platforms.

0830

0900

0930

5.1

IMPACT OF RESOURCE SHARING ON PERFORMANCE AND PERFORMANCE PREDICTION

Jan Reineke and Reinhard Wilhelm, Informatik, Universität des Saarlandes, DE

- TIME-CRITICAL COMPUTING ON A SINGLE CHIP MASSIVELY PARALLEL PROCESSOR
- Benoît Dupont de Dinechin, Kalray, FR

MAPPING MIXED-CRITICALITY APPLICATIONS ON MULTI-CORE ARCHITECTURES

Georgia Giannopoulou, Nikolay Stoimenov, Pengcheng Huang and Lothar Thiele ETH Zurich, CH

1000

COFFEE BREAK in Exhibition Area

5.2

Hot Topic: Hacking and Protecting Hardware: Threats and Challenges

Konferenz 6 0830 - 1000

Organisers	:Said Hamdioui, TU Delft, NL
	Giorgio Di Natale, LIRMM, FR
Chair:	Said Hamdioui, TU Delft, NL
Co-Chair:	Giorgio Di Natale, LIRMM, FR

For this Hot-Topic Session, we will have four leading researchers and experienced speakers from different companies to address both hacking and protecting ICs for chip data. Two speakers will focus on the weaknesses of IC and systems and the ways they can be hacked to

Chair:

4.7

Dependable System Design

Konferenz 5 1700 - 1830

Yiorgos Makris, University of Texas at Dallas, US Co-Chair: Haralampos Stratigopoulos, IMAG, FR

This section presents a variety of techniques to improve dependability of digital systems, showing how to improve security and fault tolerance at system level.

1700	REAL-TIME TRUST EVALUATION IN INTEGRATED CIRCUITS	
	Yier Jin and Dean Sullivan, The University of Central Florida, US	
1730	VERIFICATION-GUIDED VOTER MINIMIZATION IN TRIPLE- MODULAR REDUNDANT CIRCUITS	
	Dmitry Burlyaev, Pascal Fradet and Alain Girault, INRIA, FR	
1800	TRADE-OFFS IN EXECUTION SIGNATURE COMPRESSION FOR RELIABLE PROCESSOR SYSTEMS	
	Jonah Caplan ¹ , Maria Mera ² , Peter Milder ² and Brett Meyer ¹ ¹ McGill University, CA; ² SUNY Stonybrook, US	
1815	AN ENERGY-AWARE FAULT TOLERANT SCHEDULING FRAMEWORK FOR SOFT ERROR RESILIENT CLOUD COMPUTING SYSTEMS	
	Yue Gao, Sandeep Gupta, Yanzhi Wang and Massoud Pedram, University of Southern California, US	
1830	EXHIBITION RECEPTION IN SEVERAL SERVING POINTS INSIDE THE EXHIBITION AREA (TERRACE LEVEL)	
4.8	State-of-the-art in Verification: European Tertulia IC Design -	
	Enabling AMS Structured Verification / Verification in FPGA	

& IP design flows Exhibition Theatre 1700 - 1830

*

Organiser: Andreas Brüning, Silicon Saxony, DE

BRING ASIC-ALIKE VERIFICATION TO YOUR FPGA & 1700 **IP DESIGN FLOW**

> Scott Calkins, Blue Pearl Software Inc, US ENABLING AMS STRUCTURED VERIFICATION

1720

1830

EXHIBITION RECEPTION IN SEVERAL SERVING POINTS INSIDE

THE EXHIBITION AREA (TERRACE LEVEL)

WEDNESDAY

retrieve secret data, while the other two will cover smart schemes that can be used to protect ICs from such attacks.

0830	HARDWARE ATTACKS ON SECURE ICS
	Gerard van Battum, Brightsight, NL
0852	ATTACKING SMART PHONES
	Jean-Luc Danger, Secure IC, FR
0915	SECURING SYSTEM ON CHIPS
	Fethulah Smailbegovic, ESCRYPT GmbH – Embedded Security, DE
0937	SILICONAP: A SILICON AUTHENTICATION PLATFORM FOR SECURITY AND ANTI- COUNTERFEITING
	Mohammad Tehranipoor, TrueLogic, US
1000	COFFEE BREAK in Exhibition Area

5.3

Reliable Systems Variability

Antonio Miele, Politecnico d Chair: Co-Chair: José L. Ayala, Complutense

The evolution of the silicon industry over fueled by continued scaling. This has more of integration technologies. In future tec expected to become a first-order design of tackles this with novel techniques, spann latency-insensitive systems, proposing t age reliability issues in a more variable s

```
0830
```

0945

IPS

1000

TEMPORAL MEMOIZATION FOR ERROR RECOVERY IN GPGPUS

Abbas Rahimi¹, Luca Benini² and ¹UC San Diego, US; ²Università d

RELIABILITY-AWARE EXCEPTIO 0900 FAULTS IN MICROPROCESSOR A

> waleed dweik, Murali Annavaran of Southern California, US

TEMPERATURE AWARE ENERGY 0930 MAPPING OF THROUGHPUT-CO MULTIMEDIA MPSOCS

> Anup Das, Akash Kumar and Bha University of Singapore, SG

> > *

RECOVERY-BASED RESILIENT L

Yuankai Chen¹, Xuan Zeng² and ¹Northwestern University, US; ²

IP2-10, IP2-11, IP2-12

COFFEE BREAK in Exhibition Are

5.4

Chair:

0830

0900

Co-Chair:

der variability.

Prediction and optimization of timing variations

Antonio Rubio, UPC Barcelona, ES

DIMENSIONAL PROBLEMS

EQUALIZATION

Marisa López Vallejo, UPM Madrid, ES The session addresses yield analysis due to timing variations as well

Microelectronics, Tsinghua University, CN

as various flip flop design techniques improving timing margins un-

EFFICIENT HIGH-SIGMA YIELD ANALYSIS FOR HIGH

Moning Zhang, Zuochang Ye and Yan Wang, Tsinghua National Laboratory for Information Science and Technology, Institute of

SUB-THRESHOLD LOGIC CIRCUIT DESIGN USING FEEDBACK

in the Age of		Mahmoud Zangeneh and Ajay Joshi, Boston University, US
-	0930	STOCHASTIC ANALYSIS OF BUBBLE RAZOR
Konferenz 1 0830 – 1000 di Milano, IT		Guowei Zhang¹ and Peter Beerel² ¹Tsinghua University, CN; ²Univ. of Southern California, US
University of Madrid, ES	IPS	IP2-13, IP2-14, IP2-15
r past decades has been tivated the rapid evolution chnology nodes, reliability is constraint. This session	1000	COFFEE BREAK in Exhibition Area
ning from memoization to	5.5	Boosting the Scalability of Formal
o tolerate, recover and man- cenario.		Verification Technologies
		Konferenz 3 0830 – 1000
ENERGY-EFFICIENT TIMING	Chair: Co-Chair:	Fahim Rahim, Atrenta, FR Bernd Becker, University of Freiburg, DE
d Rajesh Gupta¹ di Bologna, IT		ndustrial usage of formal methods has proliferated in the
NS: TOLERATING INTERMITTENT ARRAY STRUCTURES	past decade, the capacity limitations of these techniques remains a challenge to their applicability. This session introduces a set of nove advances to boost the scalability of numerous state-of-the-art verification core technologies.	
n and Michel Dubois, University		
-RELIABILITY TRADE-OFFS FOR NSTRAINED APPLICATIONS ON	0830	SCALABLE LIVENESS VERIFICATION FOR COMMUNICATION FABRICS
		Sebastiaan Joosten and Julien Schmaltz, Open University, NL
aradwaj Veeravalli, National	0900	PROPERTY DIRECTED INVARIANT REFINEMENT FOR PROGRAM VERIFICATION
ATENCY-INSENSITIVE SYSTEMS		Tobias Welp ¹ and Andreas Kuehlmann ²
Hai Zhou¹	_	¹ UC Berkeley, US; ² Coverity, Inc., US
Fudan University, CN	0930	SIMPLE INTERPOLANTS FOR LINEAR ARITHMETIC
		Christoph Scholl ¹ , Florian Pigorsch ¹ , Stefan Disch ¹ and Ernst Althaus ²
ea		¹ University Freiburg, DE; ² University Mainz, DE
	0945	TIGHTENING BDD-BASED APPROXIMATE REACHABILITY WITH SAT-BASED CLAUSE GENERALIZATION
		Gianpiero Cabodi, Paolo Pasini, Stefano Quer and Danilo Vendraminetto, Politecnico di Torino, IT

¥

 $\mathbf{+}$

WEDNESDAY

Konferenz 2 0830 - 1000

5.6

Emerging logic technologies Konferenz 4 0830 - 1000

Chair: Mehdi Tahoori, KIT, DE Marco Ottavi, University of Rome "Tor Vergata", IT Co-Chair:

The papers in this session consider new ways to realize both Boolean and non-Boolean logic. Potential implementations are based on graphene, spin, and resonance energy transfer.

0830	RETLAB: A FAST DESIGN-AUTOMATION FRAMEWORK FOR ARBITRARY RET NETWORKS
	Mohammad Mottaghi, Arjun Rallapalli and Chris Dwyer, Duke University, US
0900	DESIGN OF 3D NANOMAGNETIC LOGIC CIRCUITS: A FULL- ADDER CASE STUDY
	Robert Perricone, X. Sharon Hu, Joe Nahas and Michael Niemier, University of Notre Dame, US
0930	HIGHLY ACCURATE SPICE-COMPATIBLE MODELING FOR SINGLE- AND DOUBLE-GATE GNRFETS WITH STUDIES ON TECHNOLOGY SCALING
	Morteza Gholipour ¹ , Ying-Yu Chen ² , Amit Sangai ² and Deming Chen ² ¹ University of Tehran, IR; ² University of Illinois at Urbana- Champaign, US
0945	REWIRING FOR THRESHOLD LOGIC CIRCUIT MINIMIZATION
	Chia-Chun Lin ¹ , Chun-Yao Wang ¹ , Yung-Chih Chen ² and Ching-Yi Huang ¹
	¹ Dept. of Computer Science, National Tsing Hua University, TW; ² Dept. of Computer Science and Engineering, Yuan Ze University, TW
IPS	IP2-17, IP2-18, IP2-19
1000	COFFEE BREAK in Exhibition Area

5.7

Test Generation and Optimization Konferenz 5 0830 - 1000

Chair: Co-Chair:

Xiaoging Wen, Kyushu Institute of Technology, JP Grzegorz Mrugalski, Mentor Graphics, PL

The session covers generation of tests for different fault models including interconnect opens, interconnect for 3D memories, and small delay faults. Additionally test optimization for SoC designs is presented.

FFFICIENT SMT-BASED ATPG FOR INTERCONNECT OPEN DEFECTS

Dominik Erb¹, Karsten Scheibler¹, Matthias Sauer² and Bernd Becker²

¹University of Freiburg, Chair of Computer Architecture, DE: ²University of Freiburg, DE

INTERCONNECT TEST FOR 3D STACKED MEMORY-ON-LOGIC

Mottagiallah Taouil¹, Mahmoud Masadeh¹, Said Hamdioui¹ and Erik Jan Marinissen² ¹Delft University of Technology, NL; ²IMEC, BE

0930

AN EFFECTIVE APPROACH TO AUTOMATIC FUNCTIONAL PROCESSOR TEST GENERATION FOR SMALL-DELAY FAULTS

Andreas Riefert¹, Lyl Ciganda², Matthias Sauer¹, Paolo Bernardi², Matteo Sonza Reorda³ and Bernd Becker¹ ¹University of Freiburg, DE; ²Politecnico di Torino, IT; ³Politecnico di Torino - DAUIN, IT

MULTI-SITE TEST OPTIMIZATION FOR MULTI-VDD SOCS USING SPACE- AND TIME-DIVISION MULTIPLEXING

DATE14

FOTIOS VARTZIOTIS¹, Chrysovalantis Kavousianos², Krishnendu Chakrabarty³, Rubin Parekhji⁴ and Arvind Jain⁴ ¹University of Ioannina, GR; ²Department of Computer Science and Engineering, University of Ioannina, GR; ³Duke University, US; 4Texas Instruments, IN

IP2-20, IP2-21, IP2-22

IPS 1000

5.8

0945

COFFEE BREAK in Exhibition Area

Hot Topic: System Integration - The **Bridge between More than Moore** and More Moore

Exhibition Theatre 0830 - 1000

Organisers	Manfred Dietrich, Fraunhofer IIS/EAS Dresden, DE
	Kai Hahn, University Siegen, DE
Chair:	Manfred Dietrich, Fraunhofer IIS/EAS Dresden, DE
Co-Chair:	Kai Hahn, University Siegen, DE

System Integration using 3D technology is a very promising way to cope with current and future requirements for electronic systems. Since the pure shrinking of devices (known as "More Moore") will come to an end due to physical and economic restrictions, the integration of systems (e.g. by stacking dies, or by adding sensor functions) shows a way to maintain the growth in complexity as well as in diversity which is necessary for future applications. This so called "More than Moore" approach complements the conventional SoC product engineering. This session gives insights in System Integration design challenges from different perspectives, ranging from design technology over MEMS product engineering and 3D interconnect to automotive cyber physical systems.

	۰.
U 8 3	1
005	

0845

0900

DESIGN TECHNOLOGY FOR 3-D INTEGRATED SYSTEMS

Andy Heinig, Fraunhofer IIS/EAS, DE

SEMICONDUCTOR PACKAGING IS BACK TO EUROPE - ADVANCES IN SYSTEM INTEGRATION IN WAFER LEVEL PACKAGING

Steffen Kroehnert, NANIUM S.A. - Niederlassung Dresden, DE

MEMS AND 3D-IC PRODUCT ENGINEERING - TECHNOLOGY DESIGN FOR SYSTEM INTEGRATION

Kai Hahn, University Siegen, DE

WEDNESDAY

0915

0930

0945

1000

A WEAR-LEVELING-AWARE DYNAMIC STACK FOR PCM MEMORY IN EMBEDDED SYSTEMS

Qingan Li1, Yanxiang He2, Yong Chen2, Chun Xue3, Nan Jiang2 and Chao Xu²

¹Wuhan University & City University of Hong Kong, CN; ²Wuhan University, CN; 3City University of Hong Kong, CN

IP2-9

IP2-10

IP2-11

IP2-7

LIFETIME HOLES AWARE REGISTER ALLOCATION FOR CLUSTERED VLIW PROCESSORS

Xuemeng Zhang¹, Hui Wu², Haiyan Sun¹ and Jingling Xue³ ¹National University of Defense Technology, CN; ²The University of New South Wales, AU; ³UNSW, AU

A LOW-POWER, HIGH-PERFORMANCE APPROXIMATE MULTIPLIER WITH CONFIGURABLE PARTIAL ERROR RECOVERY

Cong Liu¹, Jie Han¹ and Fabrizio Lombardi² ¹University of Alberta, CA; ²Northeastern University, US

A LINUX-GOVERNOR BASED DYNAMIC REALIABILITY MANAGER FOR ANDROID MOBILE DEVICES

Pietro Mercati¹, Andrea Bartolini², Francesco Paterna¹, Tajana Simunic Rosing¹ and Luca Benini² ¹UCSD, US; ²University of Bologna, IT

YIELD AND TIMING CONSTRAINED SPARE TSV ASSIGNMENT FOR THREE-DIMENSIONAL INTEGRATED CIRCUITS

DATE14

Yu-Guang Chen1, Kuan-Yu Lai1, Ming-Chao Lee2, Yiyu Shi3, Wing-Kai Hon¹ and Shih-Chieh Chang¹ ¹National Tsing Hua University, TW; ²MediaTek Inc., TW; ³Missouri University of Science and Technology, US

IP2-13

COMPILER-DRIVEN DYNAMIC RELIABILITY MANAGEMENT FOR **ON-CHIP SYSTEMS UNDER VARIABILITIES**

Semeen Rehman, Florian Kriebel, Muhammad Shafique and Jörg Henkel, Karlsruhe Institute of Technology (KIT), DE

MINIMIZING STATE-OF-HEALTH DEGRADATION IN HYBRID

ELECTRICAL ENERGY STORAGE SYSTEMS WITH ARBITRARY SOURCE AND LOAD PROFILES

Yanzhi Wang¹, Xue Lin¹, Qing Xie¹, Naehyuck Chang² and Massoud Pedram¹ ¹University of Southern California, US; ²Seoul National University, KR

IP2-14

IP2-15

IP2-16

*

DYNAMIC FLIP-FLOP CONVERSION TO TOLERATE PROCESS VARIATION IN LOW POWER CIRCUITS

mehrzad nejat, Bijan Alizadeh and Ali Afzali Kusha School of Electrical and Computer Eng., College of Eng., University of Tehran, IR

A LOW POWER AND ROBUST CARBON NANOTUBE 6T SRAM DESIGN WITH METALLIC TOLERANCE

LUO SUN¹, Jimson Mathew¹, Rishad Shafik², Dhirai Pradhan¹ and Zhen Li¹

¹University of Bristol, GB; ²University of Southampton, GB

MAKE IT REAL: EFFECTIVE FLOATING-POINT REASONING VIA EXACT ARITHMETIC

Miriam Leeser, Saoni Mukherjee, Jaideep Ramachandran and Thomas Wahl Northeastern University, US

Interactive Presentations

3D-TSV-HUB: POTENTIALS AND CHALLENGES FOR VERTICAL

SENSORS AND POWER DRIVERS, BRIDGE BETWEEN SYSTEM

Jochen Reisinger, Infineon Technologies Austria AG, AT

INTERCONNECTS IN NETWORKS-ON-CHIPS Andreas Herkersdorf, TU München, DE

ENVIRONMENT AND COMPUTING

CONCLUSIONS AND DISCUSSION

Manfred Dietrich, Fraunhofer, DE

COFFEE BREAK in Exhibition Area

Conference Level, Foyer 1000 - 1030

Interactive Presentations run simultaneously during a 30-minute slot. A poster associated to the IP paper is on display throughout the morning. Additionally, each IP paper is briefly introduced in a oneminute presentation in a corresponding regular session, prior to the actual Interactive Presentation.

FAST AND ACCURATE COMPUTATION USING STOCHASTIC CIRCUITS

Armin Alaghi and John P. Hayes, University of Michigan - Ann Arbor, US

DRAM-BASED COHERENT CACHES AND HOW TO TAKE IP2-2 ADVANTAGE OF THE COHERENCE PROTOCOL TO REDUCE THE REFRESH ENERGY

> Zoran Jaksic and Ramon Canal, Universitat Politecnica de Catalunya, ES

IP2-3 **REDUCING SET-ASSOCIATIVE L1 DATA CACHE ENERGY BY** EARLY LOAD DATA DEPENDENCE DETECTION (ELD3)

> Alen Bardizbanyan¹, Magnus Själander², David Whalley² and Per Larsson-edefors1

¹Chalmers University of Technology, SE; ²Florida State University, US

DISTRIBUTED COOPERATIVE SHARED LAST-LEVEL CACHING IN TILED MULTIPROCESSOR SYSTEM ON CHIP

Preethi Parayil Mana Damodaran¹, Stefan Wallentowitz² and Andreas Herkersdorf³

¹LIS, Technical University of Munich, DE; ²Technische Universität München, Institute for Integrated Systems, DE: 3TU München, DE

IP2-5

IP2-4

DESIGN OF SAFETY CRITICAL SYSTEMS BY REFINEMENT

Alex Iliasov¹, Arseniy Alekseyev², Danil Sokolov³ and Andrey Mokhov³

¹Newcastle University, GB; ²Newcastle University, ZW; ³Newcastle University, BB

IP2-6 ENERGY OPTIMIZATION IN ANDROID APPLICATIONS THROUGH WAKELOCK PLACEMENT

> Faisal Alam¹, Preeti Ranjan Panda¹, Nikhil Tripathi², Namita Sharma³ and Saniiv Naravan² ¹IIT Delhi, IN; ²Calypto Design Systems, IN; ³Indian Institute of Technology Delhi, IN

WEDNESDAY

ADDAY CVNTUECTO

IP2-17

IP2-1

IP2-1

IP2-2

IP2-2

IP2-2

ARRAT STRIFTESIS	
Chian-Wei Liu ¹ , Chang-En Chiang ¹ , Ching-Yi Huang ¹ , Chun-Yao Wang ¹ , Yung-Chih Chen ² , Suman Datta ³ and Vijaykrishnan Narayanan ⁴	
¹ Dept. of Computer Science, National Tsing Hua University, TW, ² Dept. of Computer Science and Engineering, Yuan Ze University, TW; ³ Department of Electrical Engineering, The Pennsylvania State University, US; ⁴ Department of Computer Science and Engineering, The Pennsylvania State University, U	
AREA MINIMIZATION SYNTHESIS FOR RECONFIGURABLE SINGLE-ELECTRON TRANSISTOR ARRAYS WITH FABRICATION CONSTRAINTS	
Yi-Hang Chen, Jian-Yu Chen and Juinn-Dar Huang, Department of Electronics Engineering, National Chiao Tung University, TW	
SOFTWARE-BASED PAULI TRACKING IN FAULT-TOLERANT QUANTUM CIRCUITS	
Alexandru Paler¹, simon devitt², Kae Nemoto² and Ilia Polian¹ ¹University of Passau, DE; ²National Institute of Informatics, J	Р
AN EFFICIENT TEMPERATURE-GRADIENT BASED BURN-IN TECHNIQUE FOR 3D STACKED ICS	
Nima Aghaee, Zebo Peng and Petru Eles, Linkoping University, Sl	E
TEST AND NON-TEST CUBES FOR DIAGNOSTIC TEST GENERATION BASED ON MERGING OF TEST CUBES	
Irith Pomeranz, Purdue University, US	
NEW IMPLEMENTIONS OF PREDICTIVE ALTERNATE ANALOG/R TEST WITH AUGMENTED MODEL REDUNDANCY	F
Haithem AYARI Florence AZAIS Serge BERNARD Mariane	

WIDTH MINIMIZATION IN THE SINGLE-ELECTRON TRANSISTOR

COMTE, Vincent KERZERHO and Michel RENOVELL, LIRMM, CNRS/ Univ. Montpellier 2, FR

After the last IP Session of each day, the "Best IP of the Day" will be awarded.

LUNCH BREAK in Exhibition Area

6.1

1230

SPECIAL DAY Hot Topic: The fight against Dark Silicon

Saal 1 1100 - 1230

Organiser: Jörg Henkel, Karlsruhe Institute of Technology, DE Chair: Jörg Henkel, Karlsruhe Institute of Technology, DE Co-Chair: Jürgen Teich, University of Erlangen-Nuremberg, DE

Dark Silicon is predicted to dominate the chip footage of upcoming many-core systems within a decade since Dennard Scaling fails mainly due to the voltage-scaling problem that results in higher power densities. It would deem upcoming technologies nodes inefficient since a majority of cores would lie fallow. Significant research efforts have started within the last couple of years to investigate and mitigate Dark Silicon effects to ensure an effective use of available chip footage. This special session gives a snapshot of current research activities of this grand challenge. In particular, the three talks present the newest trends and developments starting with the problem of Dennard Scaling and how it mandates new design constraints followed by the problem of power delivery and cooling, and concluding with the newest directions in efficient resource management for many-core systems.

1100	A LANDSCAPE OF THE NEW DARK SILICON DESIGN REGIME Michael Taylor, University of California, San Diego, US
1130	INTEGRATED MICROFLUIDIC POWER GENERATION AND COOLING FOR BRIGHT SILICON MPSOCS
	Mohamed M. Sabry ¹ , Arvind Sridhar ¹ , Patrick Ruch ² , David Atienza ¹ and Bruno Michel ² ¹ EPFL, CH; ² IBM Research, CH
1200	EFFECTIVE RESOURCE MANAGEMENT TOWARDS EFFICIENT COMPUTING
	Per Stenström, Chalmers University of Technology, SE

LUNCH BREAK in Exhibition Area

6.2

1230

Embedded Tutorial: Emerging Transistor Technologies: From Devices to Architectures

Konferenz 6 1100 – 1230

Organisers: Michael Niemier, University of Notre Dame, US X. Sharon Hu, University of Notre Dame, US Chair:

Michael Niemier, University of Notre Dame, US

This "vertically integrated" session is focused on emerging transistor technologies – particularly devices that operate at low voltages and that have steep slopes. It will: (1) introduce desirable (and undesirable) features of new device technologies; (2) highlight how new transistor technologies could impact von Neumann architectures; a particular emphasis will be placed on (a) heterogeneous multi-core architectures and accelerators (where heterogeneity stems from different device technologies) and (b) modeling efforts at all levels of the chip hierarchy (i.e., from the device-level to the architecturallevel); (3) illustrate how new device technologies could lead to significant improvements in the performance/efficiency of non-von Neumann architectures. Notably, talks (2) and (3) will identify roles for new device technologies in hybrid analog-digital systems with an end goal of improved application-level performance/efficiency.

1100

ENERGY EFFICIENT COMPUTING WITH TUNNEL FETS

Adrian Ionescu, Arnab Biswas, Nilay Dagtekin and Livio Lattanzio, Nanolab, Ecole Polytechnique Fédérale de Lausanne, CH

1130

MODELING STEEP SLOPE DEVICES: FROM CIRCUITS TO ARCHITECTURES

Karthik Swaminathan¹, Moon Seok Kim¹, Nandhini Chandramoorthy¹, Behnam Sedighi², Robert Perricone², Jack Sampson¹ and Vijaykrishnan Narayanan¹ ¹Pennsylvania State University, US; ²University of Notre Dame, US

STEEP SLOPE TRANSISTOR TECHNOLOGIES: IMPACTS ON CNN ARCHITECTURES

Indranil Palit¹, Behnam Sedighi¹, Xiaobo Sharon Hu¹, Joseph Nahas¹, Michael Niemier¹ and András Hortváth² ¹University of Notre Dame, US; ²Pázmány Péter Catholic University, HU

LUNCH BREAK in Exhibition Area 1230

Management of Micro/Macro **Renewable Energy Storage Systems**

Konferenz 1 1100 – 1230

Chair: Co-Chair:

6.3

Geoff Merrett, University of Southampton, GB Davide Brunelli, University of Trento, IT

Modern energy storage systems affect all areas of power electronics, from micro-power energy harvesting systems to mega-watt Smart Grid systems. Papers in this session address novel approaches for onchip power electronics operating under variable Vdd, and optimisation approaches to efficient design of smart grid energy storage.

1100

1200

1215

IPS

1230

ASYNCHRONOUS DESIGN FOR NEW ON-CHIP WIDE DYNAMIC RANGE POWER ELECTRONICS

Delong Shang¹, Xuefu Zhang², Fei Xia³ and Alex Yakovlev² ¹School of EEE, Newcastle University, GB; ²School of EEE, Newcastle University, GB; ³School of EEE, GB

1130 REAL-TIME OPTIMIZATION OF THE BATTERY BANKS LIFETIME IN HYBRID RESIDENTIAL ELECTRICAL SYSTEMS

Maurizio Rossi, Alessandro Toppano and Davide Brunelli, University of Trento, IT

OPTIMAL DIMENSIONING OF ACTIVE CELL BALANCING ARCHITECTURES

Swaminathan Narayanaswamy¹, Sebastian Steinhorst¹, Martin Lukasiewycz², Matthias Kauer³ and Samarjit Chakraborty⁴ ¹TUM CREATE, SG; ²TUM CREATE Singapore, SG; ³TUM CREATE Ltd,, SG; 4TU Munich, DE

OPTIMAL DESIGN AND MANAGEMENT OF A SMART RESIDENTIAL PV AND ENERGY STORAGE SYSTEM

> Di Zhu¹, Yanzhi Wang¹, Naehyuck Chang² and Massoud Pedram¹ ¹Univ. of Southern California, US: ²Seoul National University, KR

> > -

IP3-1, IP3-2, IP3-3

LUNCH BREAK in Exhibition Area

6.4

Konferenz 2 1100 - 1230

Edith Beigné, CEA LETI Grenoble, FR Chair: Co-Chair:

Domenik Helms, OFFIS Oldenburg, DE

Power delivery and distribution

This session will present innovative solutions for power delivery in complex SoCs using configurable structures working over large condition range. Configurable DC-DC and LDOs architectures will be considered underlining power efficiency issues of off-chip and on-chip regulators. Fine-grain approaches are also proposed to deal with distributed in-die power generation reducing static and dynamic power in complex SoCs.

1100

DESIGN AND EVALUATION OF FINE-GRAINED POWER-GATING FOR EMBEDDED MICROPROCESSORS

Masaaki Kondo¹, Hiroaki Kobyashi², Ryuichi Sakamoto², Motoki Wada², Jun Tsukamoto², Mitaro Namiki², Weihan Wang³, Hideharu Amano³, Kensaku Matsunaga⁴, Masaru Kudo⁴, Kimiyoshi Usami⁴, Toshiya Komoda⁵ and Hiroshi Nakamura⁵ ¹The University of Electro-Communications, JP; ²Tokyo University of Agriculture and Technology, JP; ³Keio University, JP: "Shibaura Institute of Technology, JP: "The University of Tokvo, JP

1130

1200

SUPERRANGE: WIDE OPERATIONAL RANGE POWER DELIVERY DESIGN FOR BOTH STV AND NTV COMPUTING

Xin He¹, Guihai Yan², Yinhe Han³ and Xiaowei Li³ ¹Institue of Computing Technology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, CN; ²Institute of Computing Technology, Chinese Academy of Sciences, CN; ³Institute of Computing Technology, Chinese Academy of Sciences, CN

MODELING AND ANALYSIS OF DIGITAL LDOS WITH ADAPTIVE CONTROL FOR HIGH EFFICIENCY UNDER WIDE DYNAMIC RANGE DIGITAL LOADS

Samantak Gangopadhyay, Youngtak Lee, Saad Bin Nasir and Arijit Raychowdhury, Georgia Institute of Technology, US

LUNCH BREAK in Exhibition Area 1230

6.5

Beyond EDA: Extending the Application Domain of Formal Methods

Konferenz 3 1100 - 1230

Chair: Christoph Scholl, University of Freiburg, DE Co-Chair: Gianpiero Cabodi, Politecnico di Torino, IT

Formal methods are traditionally used to verify the correctness or hardware, software, or protocols. This session introduces a set of applications which extend the use of formal methods into new domains. The first three papers demonstrate novel ways to bridge formal verification results into the synthesis domain. The fourth leverages formal reasoning to certify the correctness of photonic systems.

Dresden, Germany 24-28 March 2014

DATE14

WEDNESDAY

WEDNE	SUAT
1100	USING MAXBMC FOR PARETO-OPTIMAL CIRCUIT INITIALIZATION
	Sven Reimer, Matthias Sauer, Tobias Schubert and Bernd Becker, University of Freiburg, DE
1130	PARTIAL WITNESSES FROM PREPROCESSED QUANTIFIED BOOLEAN FORMULAS
	Martina Seidl ¹ and Robert Könighofer ² ¹ JKU Linz, AT; ² TU Graz, AT
1200	EQUIVALENCE CHECKING FOR FUNCTION PIPELINING IN BEHAVIORAL SYNTHESIS
	Kecheng Hao ¹ , Sandip Ray ² and Fei Xie ³ ¹ Xilinx Inc., US; ² Strategic CAD Labs, Intel Corporation, US; ³ Portland State University, US
1215	TOWARDS THE FORMAL ANALYSIS OF MICRORESONATORS BASED PHOTONIC SYSTEMS
	Umair Siddique¹ and Sofiene Tahar² ¹Concordia University, Montreal, CA; ²Department of Electrical and Computer Engineering, Concordia University, CA
IPS	IP3-4, IP3-5
1230	LUNCH BREAK in Exhibition Area

Model-Based Design and Hardware/ Software Interfaces

Konferenz 4 1100 – 1230

Chair: Wang Wang Yi, Uppsala University, SE Co-Chair: Wolfgang Nebel, OFFIS, DE

This sessions covers multiple abstraction in embedded system design. The first paper proposes a scalable approach to refinement checking of component-based systems using contracts and local refinement assertions. The second paper revisits the paradigm of using a set of communicating asynchronous components for implementation of synchronous models. The third paper presents a hardware scheduling support for OpenMP and the fourth paper proposes an object-aware translation layer for flash memories.

1100

6.6

LIBRARY-BASED SCALABLE REFINEMENT CHECKING FOR CONTRACT-BASED DESIGN

Antonio Iannopollo, Pierluigi Nuzzo, Stavros Tripakis and Alberto Sangiovanni-Vincentelli, University of California, Berkeley, US

1130

ISOCHRONOUS NETWORKS BY CONSTRUCTION

Yu Bai and Klaus Schneider, University of Kaiserslautern, DE

1145 TIGHTLY-COUPLED HARDWARE SUPPORT TO DYNAMIC PARALLELISM ACCELERATION IN EMBEDDED SHARED MEMORY CLUSTERS

> Paolo Burgio¹, Giuseppe Tagliavini², Francesco Conti², Andrea Marongiu² and Luca Benini³

¹University of Bologna, Université de Bretagne-Sud, IT; ²University of Bologna, IT; ³Università di Bologna, IT

1200

P-OFTL: AN OBJECT-BASED SEMANTIC-AWARE PARALLEL FLASH TRANSLATION LAYER

Wei Wang, Youyou Lu and Jiwu Shu, Tsinghua Univiersity, CN

IPS 1230

IP3-6, IP3-7

LUNCH BREAK in Exhibition Area

6.7

1100

1130

Hardening Approaches at Different Design Levels

Konferenz 5 1100 – 1230

WEDNESDAY

Chair: Lorena Anghel, TIMA, FR

New solutions for the design of hardened hardware components, from circuit to processor level.

- NOSTRADAMUS: LOW-COST HARDWARE-ONLY ERROR DETECTION FOR PROCESSOR CORES Ralph Nathan and Daniel Sorin, Duke University, US
 - WORD-LINE POWER SUPPLY SELECTOR FOR STABILITY IMPROVEMENT OF EMBEDDED SRAMS IN HIGH RELIABILITY APPLICATIONS

Bartomeu Alorda, Cristian Carmona and Sebastia Bota, Balearic Islands University, ES

1200 A HIGH PERFORMANCE SEU-TOLERANT LATCH FOR NANOSCALE CMOS TECHNOLOGY

zhengfeng huang, Hefei University of Technology, CN

 1215
 A LOW-COST RADIATION HARDENED FLIP-FLOP

 Yang Lin, Mark Zwolinski and Basel Halak, University of

 Southampton, GB

 IPS
 IP3-8, IP3-9

LUNCH BREAK in Exhibition Area

1230

6.8 First 1

First Time Right in Analog Design Enabling New Business Cases

Exhibition Theatre 1100 – 1230

1230 LUNCH BREAK in Exhibition Area

7.0

Special Day Keynote

Saal 1 1330 - 1400

The automotive industry is in a radical change process driven by technology. On the one hand side the proliferation of communication technologies into the car leads to internet connected vehicles. The vehicle will become an integral part of the internet – opening new processing paradigms for the car itself. On the other hand the vehicle itself significantly expands its sensor and processing capabilities by the use of radar, video, ultrasound sensors and usage of state of the

WEDNESDAY

art CPU and GPU processor architectures. In our talk we will address both developments and outline foreseen future applications as future driving assistant and infotainment systems as well as highly automated driving. We will discuss major requirements for the future electrical architectures and implications for future automotive chips.

1330

7.1

SPECIAL DAY KEYNOTE: THE CONNECTED CAR AND ITS IMPLICATION TO THE AUTOMOTIVE CHIP ROADMAP

Michael Bolle, Robert Bosch GmbH, DE

SPECIAL DAY Panel: HW/SW Co-Development - The Industrial Workflow

Saal 1 1430 - 1600

Organiser: Johannes Stahl, Synopsys, US Chair: Iris Stroh, Markt & Technik, DE

This panel brings together the entire supply chain for the use of virtual prototyping starting with the end users at an automotive Tier1, a semiconductor supplier, IP providers and the virtual prototyping and software development tool providers. The panelists will discuss what are the benefits and challenges of accelerating software development using virtual prototyping are for deployment in industrial projects.

Panelist Andreas Schwerin, Siemens, DE Martin Vaupel, Bosch, DE Albrecht Mayer, Infineon, DE Nick Gatherer, ARM, GB Frank Schirrmeister, Cadence, US Stephan Lauterbach, Lauterbach, US Colin Walls, Mentor Graphics, US Andreas Hoffmann, Synopsys, US

1600

COFFEE BREAK in Exhibition Area

7.2

Embedded Tutorial: Cross Layer Resiliency in Real World

Konferenz 6 1430 - 1600

-

Organiser:	Vikas Chandra, ARM, US
Chair:	Yanjing Li, Intel, US
Co-Chair:	Ulf Schlichtmann, TUM, DE

Resilience at different design hierarchies will be needed in Complex SoCs to handle failures due to variability, reliability and design errors (logical or electrical). The main reasons for the marginal behavior are sheer design complexity, uncertainties in manufacturing processes, temporal variability and operating conditions. In this session, we will cover the basics of cross layer resiliency and explore the reliability challenges in both embedded processors as well as large scale computing resources.

CROSS-LAYER RESILIENCE EXPLORATION AND OPTIMIZATION Subhasish Mitra, Stanford University, US

RELIABILITY CHALLENGES IN EMBEDDED PROCESSORS

1500 1530

1430

BILLION CHIPS OF TRILLION TRANSISTORS: HOW TO MAKE THEM RELIABLE?

Chen-Yong Cher¹ and Silvia Mueller² ¹IBM Research, US; ²IBM Boeblingen, DE

Vikas Chandra, ARM, US

COFFEE BREAK in Exhibition Area

7.3

Low power methods and multicore architectures for mobile health applications

Konferenz 1 1	430 -	1600
---------------	-------	------

Chair:Giovanni Ansaloni, EPFL, CHCo-Chair:Andrea Bartolini, University of Bologna, IT

Achieving low power operation is essential for battery operated mobile health applications. In this session, the papers address this important issue. The first two papers present multicore architectural methods for bio-signal processing, dealing with synchronisation and innovative memory architecture design. The last two papers focus on low power design of applications for bio-signal processing: tuning of sensor usage based on applications and methods to selectively drop computations to save power, without affecting the accuracy.

1430

1500

1530

1545

HARDWARE/SOFTWARE APPROACH FOR CODE SYNCHRONIZATION IN LOW-POWER MULTI-CORE SENSOR NODES

Rubén Braojos¹, Ahmed Dogan², Ivan Beretta², Giovanni Ansaloni² and David Atienza²

¹École Polytechnique Fédérale de Lausanne, CH; ²EPFL, CH

HYBRID MEMORY ARCHITECTURE FOR VOLTAGE SCALING IN ULTRA-LOW POWER MULTI-CORE BIOMEDICAL PROCESSORS

Daniele Bortolotti¹, Andrea Bartolini¹, Christian Weis², Davide Rossi¹ and Luca Benini¹

¹University of Bologna, IT; ²University of Kaiserslautern, DE

CONTEXT AWARE POWER MANAGEMENT FOR MOTION-SENSING BODY AREA NETWORK NODES

Filippo Casamassima¹, Elisabetta Farella² and Luca Benini³ ¹University of Bologna, IT; ²DEI - University of Bologna, IT; ³Università di Bologna, IT

A QUALITY-SCALABLE AND ENERGY-EFFICIENT APPROACH FOR SPECTRAL ANALYSIS OF HEART RATE VARIABILITY

Georgios Karakonstantis¹, Aviinaash Sankaranarayanan², Mohamed Sabry¹, David Atienza¹ and Andreas Burg¹ ¹EPFL, CH; ²Debiotech S.A., CH

1600

COFFEE BREAK in Exhibition Area

IMPROVING STT-MRAM DENSITY THROUGH MULTI-BIT ERROR CORRECTION

Brandon Del Bel, Jongyeon Kim, Chris H. Kim and Sachin S. Sapatnekar, University of Minnesota, US

Performance and timing analysis

IPS 1600

IP3-14, IP3-15, IP3-16

COFFEE BREAK in Exhibition Area

	9	2	
Konf	ferenz 4 1	1430 -	1600

Co-Chair:

Wang Yi, Uppsala University, SE Petru Eles, Linköping University, SE

This session includes three papers. The first uses data mining techniques to detect performance bottlenecks to improve the scalability of multicore platforms for embedded applications. The second proposes to use regular expressions for specifying the patterns of deadline misses and hits to relax schedulability analysis for cyber physical systems. The third presents an approach to the scheduling of streaming applications, considering latency constraints and minimization of the number of processors required.

1430	SCALABILITY BOTTLENECKS DISCOVERY IN MPSOC PLATFORMS USING DATA MINING ON SIMULATION TRACES
	sofiane lagraa ¹ , Alexandre Termier ² and Frédéric Pétrot ¹ ¹ Grenoble institute of Technologie, FR; ² University of Joseph Fourier, FR
1500	COMPUTING A LANGUAGE-BASED GUARANTEE FOR TIMING PROPERTIES OF CYBER-PHYSICAL SYSTEMS
	Neil Dhruva, Pratyush Kumar, Georgia Giannopoulou and Lothar Thiele, ETH Zurich, CH
1530	RESOURCE OPTIMIZATION FOR CSDF-MODELED STREAMING APPLICATIONS WITH LATENCY CONSTRAINTS
	Di Liu ¹ , Jelena Spasic ¹ , Jiali Teddy Zhai ¹ , Todor Stefanov ¹ and Gang Chen ² ¹ Leiden University, NL; ² Technical University Munich, DE
IPS	IP3-17, IP3-18, IP3-19, IP3-20
1600	COFFEE BREAK in Exhibition Area
7.7	Design-for-Test and Test Access Konferenz 5 1430 - 1600

	Konferenz 5	1430
Erik Jan Marinissen, IMEC, BE		

Chair: Co-Chair: Hans-Joachim Wunderlich, University of Stuttgart, DE

This session covers topics that blend test with fault tolerance, security, and logic placement. As the area of IC test matures the core technology is adapting to the needs of the design and its implementation. As we move forward to advanced nodes in manufacturing the need to tolerate errors could blend with test methods. Test structures provide access to key design IP which is of concern in some situations. Papers in this session address solutions in IC Test for security.

formance, and reliability of emerging memory technologies. STT-RAM and PCRAM are addressed.

1430 ASYNCHRONOUS ASYMMETRICAL WRITE TERMINATION (AAWT) FOR A LOW POWER STT-MRAM

> Rajendra Bishnoi, Mojtaba Ebrahimi, Fabian Oboril and Mehdi Tahoori

Karlsruhe Institiute of Technology, DE

1500

WRITE-ONCE-MEMORY-CODE PHASE CHANGE MEMORY Jiayin Li and Kartik Mohanram, University of Pittsburgh, US

WEDNESDAY

1430	BIT-FLIPPING SCAN - A UNIFIED ARCHITECTURE FOR FAULT TOLERANCE AND OFFLINE TEST		
	Michael Imhof and Hans-Joachim Wunderlich University of Stuttgart, DE		
1500	TESTING PUF-BASED SECURE KEY STORAGE CIRCUITS		
	Mafalda Cortez ¹ , Gijs Roelofs ¹ , Said Hamdioui ¹ and Giorgio Di Natale ²		
	¹ Delft University of Technology, NL; ² LIRMM, FR		
1530	1530 MAKING IT HARDER TO UNLOCK AN LSIB: HONEYTRAPS AND MISDIRECTION IN A P1687 NETWORK		
	Adam Zygmontowicz ¹ , Jennifer Dworak ¹ , Al Crouch ² and John Potter ²		
	¹ Southern Methodist University, US; ² ASSET InterTech, US		
1545	CO-OPTIMIZATION OF MEMORY BIST GROUPING, TEST SCHEDULING, AND LOGIC PLACEMENT		
	Ilgweon Kang and Andrew B. Kahng, UC San Diego, US		
1600	COFFEE BREAK in Exhibition Area		
7.8	FD-SOI - the Enabling European		
Technology for Energy Efficient			
			Solutions - Creating a Solution Hive
	& Design Hub as Eco-System for		
	Future Success		
	Exhibition Theatre 1430 – 1600		
1600	COFFEE BREAK in Exhibition Area		
IP3	Interactive Presentations		
11.2	Conference Level, Foyer 1600 – 1630		
	Conference Level, Poyer 1000 – 1050		
slot. A poste afternoon. A minute prese	Presentations run simultaneously during a 30-minute r associated to the IP paper is on display throughout the dditionally, each IP paper is briefly introduced in a one- intation in a corresponding regular session, prior to the ictive Presentation.		
IP3-1	DESIGN AND FABRICATION OF A 315 ¦H BONDWIRE MICRO- TRANSFORMER FOR ULTRA-LOW VOLTAGE ENERGY HARVESTING		
	Enrico Macrelli ¹ , Ningning Wang ² , Saibal Roy ² , Michael Hayes ² , Rudi Paolo Paganelli ³ , Marco Tartagni ¹ and Aldo Romani ¹ ¹ DEI, University of Bologna, IT; ² Tyndall National Institute, UCC, IE; ³ CNR-IEIIT, University of Bologna, IT		
IP3-2	PROVIDING REGULATION SERVICES AND MANAGING DATA CENTER PEAK POWER BUDGETS		
	Baris Aksanli and Tajana Rosing, University of California San Diego, US		

IP3-3	THE EN INCLUI
	Burkha Techno
IP3-4	SKETCH
	Andrew Polytec
IP3-5	TOWAR
	Hoang
IP3-6	USING RESER\
	Timon
IP3-7	ACCELE MEMOR
	Eunhye 1POSTE
IP3-8	PSP-CA ARCHII
	Hamed of Tech
IP3-9	A HYBF DETECT

ERGY BENEFIT OF LEVEL-CROSSING SAMPLING DING THE ACTUATOR'S ENERGY CONSUMPTION

rd Hensel and Klaus Kabitzsch, Dresden University of logy, DE

IP3-4

IP3-11

IP3-12

IP3-13

IP3-14

IP3-15

*

 $\mathbf{+}$

ILOG: SKETCHING COMBINATIONAL CIRCUITS

Becker, David Novo and Paolo Ienne, École hnique Fédérale de Lausanne, CH

- DS VERIFYING DETERMINISM OF SYSTEMC DESIGNS **IP3-5**
 - M. Le and Rolf Drechsler, University of Bremen, DE
 - GUIDED LOCAL SEARCH FOR ADAPTIVE RESOURCE VATION IN LARGE-SCALE EMBEDDED SYSTEMS

ter Braak, University of Twente, NL

RATING GRAPH COMPUTATION WITH RACETRACK AND POINTER-ASSISTED GRAPH REPRESENTATION

ek Park¹, Helen Li², Sungjoo Yoo¹ and Sunggu Lee¹ CH, KR; ²Univ. of Pittsburgh, US

CHE: A LOW-COST FAULT-TOLERANT CACHE MEMORY ECTURE

Farbeh and Seyed Ghassem Miremadi, Sharif University noloav, IR

RID NON-VOLATILE SRAM CELL WITH CONCURRENT SEU TION AND CORRECTION

Pilin Junsangsri¹, Fabrizio Lombardi¹ and Jie Han² ¹Northeastern University, US; ²University of Alberta, CA

IP3-10 BATTERY AWARE STOCHASTIC QOS BOOSTING IN MOBILE COMPUTING DEVICES

Hao Shen, Qiuwen Chen and Qinru Qiu, Syracuse University, US

A THERMAL RESILIENT INTEGRATION OF MANY-CORE MICROPROCESSORS AND MAIN MEMORY BY 2.5D TSI I/OS

Sih-Sian Wu¹, Kanwen Wang¹, Sai Manoj P. D.¹, Tsung-Yi Ho² and Hao Yu¹

¹Nanyang Technological University, SG; ²National Cheng Kung University, TW

LEVERAGING ON-CHIP NETWORKS FOR EFFICIENT PREDICTION **ON MULTICORE COHERENCE**

Libo Huang, National University of Defense Technology, CN

AN ADAPTIVE MEMORY INTERFACE CONTROLLER FOR IMPROVING BANDWIDTH UTILIZATION OF HYBRID AND RECONFIGURABLE SYSTEMS

Vito Giovanni Castellana¹, Antonino Tumeo² and Fabrizio Ferrandi¹

¹Politecnico di Milano, DEIB, IT: ²Pacific Northwest National Laboratory, US

ENERGY EFFICIENT IN-MEMORY AES ENCRYPTION BASED ON NONVOLATILE DOMAIN-WALL NANOWIRE

Yuhao Wang¹, Pingfan Kong¹, Hao Yu¹ and Dennis Sylvester² ¹Nanyang Technological University, SG; ²University of Michigan, US

ICE: INLINE CALIBRATION FOR MEMRISTOR CROSSBAR-BASED COMPUTING ENGINE

Boxun Li¹, Yu Wang¹, Yiran Chen², Helen Li² and Huazhong Yang¹ ¹Tsinghua University, CN; ²University of Pittsburgh, US

DATE14

*

*
WEDNESDAY

Konferenz 6 1700 – 1830

microprocessors and reconfigurable hardware. NTC takes advantage of the quadratic relation between the supply voltage (Vdd) and the dynamic power, by lowering the supply voltage of chips to a value only slightly higher than the threshold voltage. EXTREME-SCALE COMPUTER ARCHITECTURE: ENERGY 1700 **EFFICIENCY FROM THE GROUND UP**

Josep Torrellas, University of Illinois Urbana Champaign, US

VOLTAGE ISLAND MANAGEMENT IN NEAR THRESHOLD MANYCORE ARCHITECTURES TO MITIGATE DARK SILICON

Hot Topic: Near Threshold

Michael Huebner, Ruhr-University Bochum, DE

To face with the power/utilization wall, Near-Threshold Computing

(NTC) has emerged as one of the most promising approach to achieve

an order of magnitude improvement or more in energy efficiency of

Computing (NTC)

Organiser: Michael Huebner, Ruhr-University Bochum, DE

¹Politecnico di Milano, IT: ²National Technical University of Athens, GR

1730

RESOLVING THE MEMORY BOTTLENECK FOR SINGLE SUPPLY NEAR-THRESHOLD COMPUTING

Tobias Gemmeke¹, Mohamed Sabry², Jan Stuijt¹, Praveen Raghavan³, Francky Catthoor³ and David Atienza² ¹Holst-Centre / IMEC, NL; ²ESL-EPFL, CH; ³IMEC, BE

DATE PARTY in "Gläserne Manufaktur" of the Volkswagen AG

Physical Attacks and countermeasures

Konferenz 1 1700 – 1830

Chair:	Francesco Regazzoni, Alari, CH		
Co-Chair:	Shivam Bhasin, Telecom Paristech, FR		

Physical Attacks are a major security threat for embedded system applications. This session focuses on several aspects of this problem. The presented papers range from countermeasures against power analysis and fault-based attacks, including electromagnetic and laser injections.

1700

EFFICIENCY OF A GLITCH DETECTOR AGAINST FLECTROMAGNETIC FAULT INJECTION

Loic Zussa¹, Amine Dehbaoui¹, Karim Tobich², Jean-Max Dutertre¹, Philippe Maurine², Ludovic Guillaume-Sage², Jessy Clediere³ and Assia Tria³ ¹ENSM-SE, FR: ²LIRMM, FR: ³CEA, FR

ANALYZING AND ELIMINATING THE CAUSES OF FAULT SENSITIVITY ANALYSIS

Nahid Farhady Ghalaty, Aydin Aysu and Patrick Schaumont, Virginia Tech, US

IP3-16 COMPLEMENTARY RESISTIVE SWITCH BASED STATEFUL LOGIC **OPERATIONS USING MATERIAL IMPLICATION**

Yuanfan Yang¹, Jimson Mathew¹, Dhiraj K Pradhan¹, Marco Ottavi² and Salvatore Pontarelli²

¹University of Bristol, GB; ²University of Rome "Tor Vergata", IT

A LAYERED APPROACH FOR TESTING TIMING IN THE MODEL-IP3-17 **BASED IMPLEMENTATION**

> BaekGyu Kim¹, Hyeon I Hwang², Taejoon Park², Sanghyuk Son² and Insup Lee¹

¹University of Pennsylvania, US; ²Daegu Gyeongbuk Institute of Science & Technology, KR

MODEL-BASED PROTOCOL LOG GENERATION FOR TESTING A IP3-18 TELECOMMUNICATION TEST HARNESS USING CLP

> Kenneth Balck¹, Olga Grinchtein¹ and Justin Pearson² ¹Ericsson AB, SE; ²Uppsala University, SE

TIME-DECOUPLED PARALLEL SYSTEMC SIMULATION IP3-19

> Jan Weinstock¹, Christoph Schumacher¹, Rainer Leupers¹, Gerd Ascheid¹ and Laura Tosoratto² ¹RWTH Aachen, DE: ²Istituto Nazionale di Fisica Nucleare, Sezione di Roma, IT

IP3-20

A UNIFIED METHODOLOGY FOR A FAST BENCHMARKING OF PARALLEL ARCHITECTURE

Alexandre Guerre, Jean-Thomas Acquaviva and Yves Lhuillier, CEA LIST, FR

After the last IP Session of each day, the "Best IP of the Day" will be awarded.

1930

DATE PARTY in "Gläserne Manufaktur" of the Volkswagen AG

8.1

SPECIAL DAY System Simulation and Virtual Prototyping

Saal 1 1700 - 1830

Organiser: Johannes Stahl, Synopsys, US Chair: Johannes Stahl, Synopsys, US

In this session we will review several practical applications of virtual prototyping for architecture design work and software development across different markets such as mobile, industrial and automotive. The authors will share their practical experiences in using the virtual prototyping methodology and current commercial tools.

POWER MODELING AND ANALYSIS IN EARLY DESIGN PHASES 1700

Bernhard Fischer, Christian Cech and Hannes Muhr, Siemens, AT

SYSTEM-LEVEL DESIGN METHODOLOGY ENABLING FAST 1730 **DEVELOPMENT OF BASEBAND MP-SOC FOR 4G SMALL CELL** BASE STATION

> Shan Tang, Zhu Ziyuan and Yongtao su, Institute of Computing Technology, Chinese Academy of Sciences, CN

1800 VIRTUAL PROTOTYPE LIFE CYCLE IN AUTOMOTIVE APPLICATIONS

Manfred Thanner, Freescale, DE

DATE PARTY in "Gläserne Manufaktur" of the Volkswagen AG 1930

1730

1930

8.3

8.2

Chair:

WEDNESDAY

DESIGN SPACE EXPLORATION

Murali Krishna Goldsmith, Venkatesh R, Ulka Shrotri and Supriya Agrawal, Tata Research Development and Design Centre, Tata Consultancy Services Limited, IN

Jiaxing Zhang and Gunar Schirner, Northeastern University, US

IP4-4, IP4-5, IP4-6

SIMULATIONS

Taiwan, TW

and guicker to create.

1700

1730

1800

IPS

1930

DATE PARTY in "Gläserne Manufaktur" of the Volkswagen AG

reduce translational efforts and thus make specifications both easier

HIGHLY EFFICIENT DETERMINISTIC FULL-SYSTEM

AN ACTIVITY-SENSITIVE CONTENTION DELAY MODEL FOR

Shu-Yung Chen, Chien-Hao Chen and Ren-Song Tsay, The Department of Computer Science National Tsing Hua University,

AUTOMATIC SPECIFICATION GRANULARITY TUNING FOR

8.6

Mapping and Scheduling for Many-**Core Embedded Systems**

Konferenz 4 1700 – 1830

Chair: Marc Geilen, Eindhoven University of Technology, NL Co-Chair: Sébastien Le Beux, Ecole Centrale de Lyon, FR

This session discusses novel ideas for embedded software implementation on many-core architectures. The first presentation deals with an optimized implementation of a H265 video coding algorithm on many-core architectures. A run-time scheduling approach for GPGPU architectures for priority-based systems is presented in the second presentation. The third talk presents an efficient run-time resource manager heuristic for many-core architectures based on a Lagrangian relaxation technique.

1700

1730

SOFTWARE ARCHITECTURE OF HIGH EFFICIENCY VIDEO CODING FOR MANY-CORE SYSTEMS WITH POWER-EFFICIENT WORKLOAD BALANCING

Muhammad Usman Karim Khan, Muhammad Shafigue and Jörg Henkel, Karlsruhe Institute of Technology (KIT), DE

GPU-EVR: RUN-TIME EVENT BASED REAL-TIME SCHEDULING FRAMEWORK ON GPGPU PLATFORM

Haeseung Lee and Mohammad Abdullah Al Farugue University of California, Irvine, US

A SMALLER AND FASTER VARIANT OF RSM

Noritaka Yamashita, Kazuhiko Minematsu, Toshihiko Okamura and Yukiyasu Tsunoo, NEC, JP

1930

1800

DATE PARTY in "Gläserne Manufaktur" of the Volkswagen AG

8.4 **Efficient Designs for Telecom and Financial Applications**

Konferenz 2 1700 – 1830

Chair: Sergio Saponara, University of Pisa, IT **Co-Chair:** Amer Baghdadi, Telecom Bretagne, FR

The session presents energy and performance efficient implementations of wireless communication and financial applications

1700	ENERGY EFFICIENT MIMO PROCESSING: A CASE STUDY OF
	OPPORTUNISTIC RUN-TIME APPROXIMATIONS

David Novo¹, Nazanin Farahpour¹, Ubaid Ahmad², Francky Catthoor² and Paolo Ienne¹ ¹EPFL, CH; ²IMEC, BE

ENERGY-EFFICIENT FPGA IMPLEMENTATION FOR BINOMIAL 1730 **OPTION PRICING USING OPENCL**

> Valentin Mena Morales¹, Pierre-Henri Horrein¹, Erik Hochapfel², Sandrine Vaton³ and Amer Baghdadi¹

¹Institut Mines-Telecom; Telecom Bretagne; Lab-STICC, FR; ²ADACSYS, FR; ³Institut Mines-Telecom; Telecom Bretagne; IRISA, FR

1800 HARDWARE IMPLEMENTATION OF A REED-SOLOMON SOFT DECODER BASED ON INFORMATION SET DECODING

Stefan Scholl and Norbert Wehn, TU Kaiserslautern, DE

AMBIENT VARIATION-TOLERANT AND INTER COMPONENTS AWARE THERMAL MANAGEMENT FOR MOBILE SYSTEM ON CHIPS

Francesco Paterna¹, Joe Zanotelli² and Tajana Rosing¹ ¹University of California, San Diego, US; ²Qualcomm Inc., US

IPS IP4-2, IP4-3

1815

1930

8.5

DATE PARTY in "Gläserne Manufaktur" of the Volkswagen AG

Modeling & Specification

Konferenz 3 1700 - 1830

Chair: Wolfgang Mueller, University of Paderborn, DE Co-Chair: Francois PECHEUX, UPMC, FR

The first presentation proposes an analytical model to estimate the contention and the resulting delays on accessing shared components in a multi-core environment. In order to find the right granularity for design space exploration, the second presentation provides an algorithm for automatic aggregation of design blocks based upon their static computation demands. Finally, the last presentation proposes a novel formal notation for reactive system requirements in order to

WEDNESDAY

MULTI-OBJECTIVE DISTRIBUTED RUN-TIME RESOURCE MANAGEMENT FOR MANY-CORES

Stefan Wildermann, Michael Glaß and Jürgen Teich University of Erlangen-Nuremberg, DE

IPS IP4-7, IP4-8, IP4-9, IP4-10

DATE PARTY in "Gläserne Manufaktur" of the Volkswagen AG

8.7

1930

Performance Modeling and Delay Test

Konferenz 5 1700 - 1830

Chair:Robert Aitken, ARM, USCo-Chair:Mehdi Tahoori, KIT, DE

As technology dimensions shrink and process complexity increases, it becomes vital to accurately model performance limiters such as device and metal variability, as well as to determine when these effects become so critical that delay requirements are exceeded.

1700

EFFICIENT PERFORMANCE ESTIMATION WITH VERY SMALL SAMPLE SIZE VIA PHYSICAL SUBSPACE PROJECTION AND MAXIMUM A POSTERIORI ESTIMATION

Li Yu¹, Sharad Saxena², Christopher Hess², Ibrahim (Abe) Elfadel³, Dimitri Antoniadis⁴ and Duane Boning⁴ ¹Massachusetts Institute of Technology, US; ²PDF Solution, Inc, US; ³Masdar Institute of Science and Technology, AE; ⁴MIT, US

1730 JOINT VIRTUAL PROBE: JOINT EXPLORATION OF MULTIPLE TEST ITEMS' SPATIAL PATTERNS FOR EFFICIENT SILICON CHARACTERIZATION AND TEST PREDICTION

Shuangyue Zhang¹, Fan Lin², Chun-Kai Hsu², Kwang-Ting Cheng² and Hong Wang¹

¹Department of Automation, Tsinghua University, CN; ²Department of Electrical and Computer Engineering, University of California, Santa Barbara, US

SUBSTITUTING TRANSITION FAULTS WITH PATH DELAY FAULTS AS A BASIC DELAY FAULT MODEL

Irith Pomeranz, Purdue University, US

1815 STANDARD CELL LIBRARY TUNING FOR VARIABILITY TOLERANT DESIGNS

Sebastien Fabrie¹, Juan Diego Echeverri², Maarten Vertregt² and Jose Pineda²

¹Eindhoven University of Technology, NL; ²NXP Semiconductors, NL

*

1930

1800

DATE PARTY in "Gläserne Manufaktur" of the Volkswagen AG

8.8

Hot Topic: Beyond CMOS Ultra-lowpower Computing

Exhibition Theatre 1700 – 1830

Organiser: Saibal Mukhopadhyay, Georgia Institute of Technology, US Chair: Arijit Raychowdhury, Georgia Institute of Technology, US Co-Chair: Saibal Mukhopadhyay, Georgia Institute of Technology, US

With conventional CMOS scaling becoming increasingly challenging, the designers wonder what opportunities and challenges exist beyond-CMOS for both Boolean and non-Boolean computing. This session will discuss three very different and promising emerging technologies -- Tunneling Field-Effect Transistor, Spintronics, and nano-electro-mechanical switches (NEMS) -- for low-power electronics. The talks will discuss the need for innovating and evaluating new circuit and system design methods as new device technologies emerge.

ULTRA-LOW POWER ELECTRONICS WITH SI/GE TUNNEL FET

Amit Trivedi, Mohammad Faisal Amir and Saibal Mukhopadhyay, Georgia Institute of Technology, US

BRAIN-INSPIRED COMPUTING WITH SPIN TORQUE DEVICES

Kaushik Roy, Mrigank Sharad, Deliang Fan and Karthik Yogendra, Purdue University, US

TOWARD ULTRALOW-POWER COMPUTING AT EXTEME WITH SILICON CARBIDE (SIC) NANOELECTROMECHANICAL LOGIC

Swarup Bhunia, Vaishnavi Ranganathan, Tina He, Srihari Rajgopal, Rui Wang, Mehran Mehregany and Philip Feng Case Western Reserve University, US

DATE PARTY in "Gläserne Manufaktur" of the Volkswagen AG

9.1

special day more-than-moore

THURSDAY 27 MARCH, 2014

SPECIAL DAY Hot Topic: CMOS scaling - from evolutionary to revolutionary computing

Saal 1 0830 - 1000

Organisers: Thomas Mikolajick, NamLab gGmbH, DE Ian O'Connor, Lyon Institute of Nanotechnology, FR Chair: Thomas Mikolajick, NamLab gGmbH, DE Co-Chair: Ian O'Connor, Lyon Institute of Nanotechnology, FR

Transistors as switches have now scaled down to a point where the classical bulk structure is no longer tenable and it is necessary to change the nature of the channel structure. In this session, the three principal contenders for following on from conventional devices will be examined. The first paper looks at the use of III-V nanowires, with expected benefits in terms of speed and energy, as well as integration challenges. The second paper looks at how the use of switches with controllable polarity, such as in silicon nanowire devices, can improve the energy efficiency of systems on chip. The devices themselves are explored in detail in the third paper, with the concept of fine-grain reconfigurability at the fore. The fourth and final paper gives a reality check on carbon electronics and the most promising devices in this class.

0850

III-V SEMICONDUCTOR NANOWIRES FOR FUTURE DEVICES

H. Schmid, B. Borg, K. Moselund, P. Das Kunungo, G. Signorello, S. Karg, P. Mensch, V. Schmidt and H. Riel, IBM Research, CH

ADVANCED SYSTEM ON A CHIP DESIGN BASED ON CONTROLLABLE-POLARITY FETS

Pierre-Emmanuel Gaillardon, Luca Amaru, Jian Zhang and Giovanni De Micheli, Integrated Systems Laboratory – Swiss Federal Institute of Technology, CH

0915 RECONFIGURABLE SILICON NANOWIRE DEVICES AND CIRCUITS: OPPORTUNITIES AND CHALLENGES

> Walter Weber¹, André Heinzig², Jens Trommer¹, Markus König², Matthias Grube¹ and Thomas Mikolajick¹ ¹Namlab qGmbH, DE; ²TU Dresden, DE

> > *

ADVANCING CMOS WITH CARBON ELECTRONICS

Franz Kreupl, TU Munich, DE

COFFEE BREAK in Exhibition Area

9.2

Low-Cost, High-Performance NoCs

Konferenz 6 0830 - 1000

Chair:Kees Goossens, Eindhoven University, NLCo-Chair:Luca Ramini, University of Ferrara, IT

This session pushes the boundaries of NoC performance optimization while at the same time accounting for implementation constraints. The first paper takes a perspective where express channels are added to the topology, and then smart application mapping is performed. The second paper instead chooses the TDM NoC route to provide guaranteed performance, and significantly optimizes the TDM scheduling process. Finally, the last paper reduces buffer sizes, while also providing elasticity, in a router's virtual channel buffers.

	-
0830	APPLICATION MAPPING FOR EXPRESS CHANNEL-BASED NETWORKS-ON-CHIP
	Di Zhu, Lizhong Chen, Siyu Yue and Massoud Pedram University of Southern California, US
0900	PARALLEL PROBE BASED DYNAMIC CONNECTION SETUP IN TDM NOCS
	Shaoteng Liu, Axel Jantsch and Zhonghai Lu, KTH, SE
0930	ELASTISTORE: AN ELASTIC BUFFER ARCHITECTURE FOR NETWORK-ON-CHIP ROUTERS
	Giorgos Dimitrakopoulos ¹ , Ioannis Seitanidis ¹ , Anastasios Psarras ¹ and Chrysostomos Nicopoulos ² ¹ Democritus University of Thrace, GR; ² University of Cyprus, CY
IPS	IP4-12, IP4-13
1000	COFFEE BREAK IN EXHIBITION AREA
9.3	Hardware Implementations for

Hardware Implementations Data Security

Konferenz 1 0830 - 1000

Chair: Viktor Fischer, St Etienne, FR Co-Chair: Tim Gueneysu, RUB, DE

Hardware features are used as a trust anchor in many secure systems. This includes design obfuscation techniques, encrypted processing, and biometric systems which are discussed in this session.

0830

EMBEDDED RECONFIGURABLE LOGIC FOR ASIC DESIGN OBFUSCATION AGAINST SUPPLY CHAIN ATTACKS

Bao Liu¹ and Brandon Wang² ¹University of Texas San Antonio, US; ²Cadence Design Systems, Inc., US

0900

A MINIMALIST APPROACH TO REMOTE ATTESTATION

Aurélien Francillon¹, Quan Nguyen², Kasper Rasmussen² and Gene Tsudik² ¹EURECOM, FR: ²University of California, Irvine, US

76 www.date-conference.com

DATE14

24-28 March 2014 Dresden, Germany DATE14

MULTI RESOLUTION TOUCH PANEL WITH BUILT-IN FINGERPRINT SENSING SUPPORT

Pranav Koundinya, Sandhya Theril, Tao Feng, Varun Prakash, Jimming Bao and Weidong Shi, University of Houston, US

HEROIC: HOMOMORPHICALLY ENCRYPTED ONE INSTRUCTION COMPUTER

Nektarios Georgios Tsoutsos¹ and Michail Maniatakos² ¹NYU Polytechnic School of Engineering, US; ²NYU Abu Dhabi, AE

COFFEE BREAK IN EXHIBITION AREA

9.4

1000

Timing challenges in validation

Konferenz 2 0830 – 1000

Chair: Co-Chair:

Elena Ioana Vatajelu, Politecnico di Torino, IT **Mark Zwolinski,** University of Southampton, GB

Accelerated timing simulation is essential for today's chip designs, whether it is performed at the gate-level or at the system-level. This session provides solutions to address the challenges of timing analysis and timing validation performance across multiple levels of design's abstractions.

0900

FAST STA PREDICTION-BASED GATE-LEVEL TIMING SIMULATION

Tariq Bashir Ahmad and Maciej Ciesielski, UMASS Amherst, US

A CROSS-LEVEL VERIFICATION METHODOLOGY FOR DIGITAL IPS AUGMENTED WITH EMBEDDED TIMING MONITORS

Valerio Guarnieri¹, Massimo Petricca², Alessandro Sassone², Sara Vinco¹, Nicola Bombieri¹, Franco Fummi³, Enrico Macii² and Massimo Poncino²

¹University of Verona, IT; ²Politecnico di Torino, IT; ³Universita' di Verona, IT

0930

1000

EMPOWERING STUDY OF DELAY BOUND TIGHTNESS WITH SIMULATED ANNEALING

Xueqian Zhao and Zhonghai Lu, KTH Royal Institute of Technology, SE

COFFEE BREAK IN EXHIBITION AREA

9.5

Hot Topic: Connecting Different Worlds – Technology Abstraction for Reliability-Aware Design and Test

Konferenz 3 0830 - 1000

Organisers: Ulf Schlichtmann, Technische Universität München, DE Andreas Herkersdorf, Technische Universität München, DE Nikil Dutt, University of California, Irvine, US Co-Chair: Mehdi Tahoori, Karlsruhe Institute of Technology, DE

The rapid shrinking of device geometries in the nanometer regime requires new technology-aware design methodologies. These must be

able to evaluate the resilience of the circuit throughout all System on Chip (SoC) abstraction levels. To successfully guide design decisions at the system level, reliability models, which abstract technology information, are required to identify those parts of the system where additional protection in the form of hardware or software countermeasures is most effective. Interfaces such as the presented Resilience Articulation Point (RAP) or the Reliability Interchange Information Format (RIIF) are required to enable EDA-assisted analysis and propagation of reliability information. The models are discussed from different perspectives, such as design and test.

0830	INTRODUCTION TO RAP (RESILIENCE ARTICULATION POINT)
	Andreas Herkersdorf, TU München, DE
0845	SYSTEM LEVEL DESIGN USING RAP (RESILIENCE ARTICULATION POINT)
	Ulf Schlichtmann, Technische Universität München, DE
0900	CROSS-LAYER RELIABILITY IN THE DESIGN OF AN ERROR RESILIENT COMMUNICATION SYSTEM
	Norbert Wehn, University of Kaiserslautern, DE
0915	RIIF - TOWARD A STANDARD APPROACH FOR CREATING RELIABILITY MODELS FOR COMPLEX SILICON DEVICES
	Adrian Evans, IROC Technologies, FR
0930	TEST PERSPECTIVES
	Jacob Abraham, UT Austin, US
0945	INDUSTRIAL PERSPECTIVE
	Sani Nassif, IBM, US
1000	COFFEE BREAK IN EXHIBITION AREA

Schedulability analysis

Konferenz 4 0830 - 1000

Chair: Giuseppe Co-Chair: Benny Ak

Giuseppe Lipari, ENS - Cachan, FR Benny Akesson, CTU Prague, CZ

This session deals with scheduling and schedulability analysis of real-time systems. In particular, it presents different models of scheduling, including fixed and dynamic priority, and real-time calculus.

	٦	n		ο	1	ï
0030	4	U		٤	4	Ľ

RATE-ADAPTIVE TASKS: MODEL, ANALYSIS, AND DESIGN ISSUES

Giorgio Buttazzo¹, Enrico Bini² and Darren Buttle³ ¹Scuola Superiore Sant'Anna, IT; ²Lund University, SE; ³ETAS-PGA/PRM-E, DE

0900

0930

ACCEPTANCE AND RANDOM GENERATION OF EVENT SEQUENCES UNDER REAL TIME CALCULUS CONSTRAINTS

Kajori Banerjee and Pallab Dasgupta, Indian Institute of Technology Kharagpur, IN

GENERAL AND EFFICIENT RESPONSE TIME ANALYSIS FOR EDF SCHEDULING

Nan Guan and Wang Yi, Uppsala University, SE

THURSDAY

24-28 March 2014 Dresden, Germany DATE14

THE SCHEDULABILITY REGION OF TWO-LEVEL MIXED-CRITICALITY SYSTEMS BASED ON EDF-VD

Dirk Mueller and Alejandro Masrur, TU Chemnitz, DE

1000

COFFEE BREAK IN EXHIBITION AREA

9.7

Timing Analysis and Cell Design Konferenz 5 0830 - 1000

 Chair:
 Jose Monteiro, INESC-ID / Tecnico, University of Lisboa, PT

 Co-Chair:
 Elena Dubrova, Royal Institute of Technology, SE

The papers in this session present static timing techniques and tools for the analysis and synthesis of logic circuits. The papers take into account new aspects of timing analysis like variability, leakage and sign-off.

0900

FACILITATING TIMING DEBUG BY LOGIC PATH CORRESPONDENCE

Oshri Adler, Eli Arbel, Ilia Averbouch, Ilan Beer and Inna Grijnevitch, IBM, IL

STATISTICAL STATIC TIMING ANALYSIS USING A SKEW-NORMAL CANONICAL DELAY MODEL

Vijaykumar M and V Vasudevan, Department of Electrical Engineering Indian Institute of Technology Madras, IN

LEAKAGE-POWER-AWARE CLOCK PERIOD MINIMIZATION

Hua-Hsin Yeh¹, Shih-Hsu Huang¹ and Yow-Tyng Nieh² ¹Chung Yuan Christian University, TW; ²Industrial Technology Research Institute, TW

Seung-Soo Han¹, Andrew B. Kahng², Siddhartha Nath² and Ashok S. Vydyanathan²

¹Myongji University, Yongin, KR; ²University of California, San Diego, US

IP4-17, IP4-18, IP4-19

COFFEE BREAK IN EXHIBITION AREA

9.8

IPS

1000

Embedded Tutorial: Memcomputing: the Cape of Good Hope

Exhibition Theatre 0830 – 1000

Organisers	: Yiyu Shi, Missouri University of Science & Technology, US
	Hung-Ming Chen, National Chiao Tung University, TW
Chair:	Tsung-Yi Ho, CSIE, NCKU, TW
Co-Chair:	Hung-Ming Chen, National Chiao Tung University, TW

Energy efficiency has emerged as a major barrier to performance scalability for modern processors. On the other hand, significant breakthroughs have been achieved in memory technologies recently. As such, the fascinating idea of memcomputing (i.e., use memory for computation purposes) has drawn wide attention from both academia and industry as an effective remedy. Compared with conventional logic computing, memory array provides large set of parallel resources with high bandwidth, which can be configured to perform computing in spatial/temporal manner leading to dramatic reduction in processor-memory traffic. Moreover, memory computing brings the computing engine close to the data, thus drastically minimizing the von Neumann bottleneck. Finally, it exploits the advances in memory technologies and integration approaches (e.g. 3D integration) to achieve better technology scalability. This special session offers a broad-spectrum retreat (devices, processes and systems) on this hot topic to the general CAD community, hoping to inspire more contributions from the design automation perspective.

0830	MEMCOMPUTING: A BRAIN-INSPIRED COMPUTING PARADIGM
	Yuriy Pershin, University of South Carolina, US
0900	MSIM: A GENERAL CYCLE ACCURATE SIMULATION PLATFORM FOR MEMCOMPUTING STUDIES
	Chun Zhang¹, Peng Deng², Hui Geng¹, Jianming Liu¹, Qi Zhu², Jinjun Xiong³ and Yiyu Shi¹
	¹ Missouri University of Science and Technology, US; ² University of California, Riverside, US; ³ IBM T.J. Watson Research Center, US
0930	ENERGY-EFFICIENT HARDWARE ACCELERATION THROUGH COMPUTING IN THE MEMORY
	Somnath Paul ¹ , Robert Karam ² , Swarup Bhunia ² and Ruchir Puri ³ ¹ Intel Corporation, US; ² Case Western Reserve University, US; ³ IBM Watson Research Center, US
1000	COFFEE BREAK IN EXHIBITION AREA

IP4

Interactive Presentations

Conference Level, Foyer 1000 - 1030

Interactive Presentations run simultaneously during a 30-minute slot. A poster associated to the IP paper is on display throughout the morning. Additionally, each IP paper is briefly introduced in a oneminute presentation in a corresponding regular session, prior to the actual Interactive Presentation.

A MULTIPLE FAULT INJECTION METHODOLOGY BASED ON CONE PARTITIONING TOWARDS RTL MODELING OF LASER ATTACKS

Athanasios Papadimitriou¹, David Hely¹, Vincent Beroulle¹, Paolo Maistri² and Regis Leveugle³ ¹LCIS Laboratory - Grenoble INP, FR; ²TIMA Laboratory / CNRS, FR; ³TIMA Laboratory / Grenoble INP, FR

IP4-2

IP4-3

ENERGY EFFICIENT DATA FLOW TRANSFORMATION FOR GIVENS ROTATION BASED QR DECOMPOSITION

Namita Sharma¹, Preeti Ranjan Panda¹, Min Li², Prashant Agrawal² and Francky Catthoor² ¹Indian Institute of Technology Delhi, IN; ²IMEC, BE

MODE-CONTROLLED DATAFLOW BASED MODELING & ANALYSIS OF A 4G-LTE RECEIVER

Hrishikesh Salunkhe¹, Orlando Moreira² and Kees van Berkel¹ ¹TU Eindhoven, NL; ²ST-Ericsson, NL

IP4-4

IP4-5

IP4-6

IP4-7

IP4-8

IP4-9

IP4-10

IP4-11

IP4-12

IP4-13

UGH SECURITY

Dresden, Germar
: March 2014
24-28

DATE14

 \geq

EDA TOOLS TRUST EVALUATION THRO
PROPERTY PROOFS

Yier Jin, The University of Central Florida, US

Yanchen Long¹, Zhonghai Lu² and Xiaolang Yan³ ¹Zhejiang University and KTH Royal Institute of Technology, SE; ²KTH Royal Institute of Technology, SE; ³Zhejiang University, CN

Saman Kiamehr¹, Farshad Firouzi¹, Mojtaba Ebrahimi² and Mehdi Tahoori²

¹Karlsruhe Institute of Technology (KIT), DE; ²Karlsruhe Institute of Technology, DE

PASS-XNOR LOGIC: A NEW LOGIC STYLE FOR P-N JUNCTION BASED GRAPHENE CIRCUITS

Valerio Tenace, Andrea Calimera, Enrico Macii and Massimo Poncino, Politecnico di Torino, IT

MIXED ALLOCATION OF ADJUSTABLE DELAY BUFFERS COMBINED WITH BUFFER SIZING IN CLOCK TREE SYNTHESIS OF MULTIPLE POWER MODE DESIGNS

Kitae Park, Geunho Kim and Taewhan Kim, Seoul National University, KR

After the last IP Session of each day, the "Best IP of the Day" will be awarded.

1230

LUNCH BREAK in Exhibition Area

10.1

SPECIAL DAY Hot Topic: Memories today and tomorrow

Saal 1 1100 - 1230

Organisers: Thomas Mikolajick, NamLab gGmbH, DE

Chair: Co-Chair:

Ian O'Connor, Lyon Institute of Nanotechnology, FR Tahoori Mehdi, Karlsruhe Institute of Technology, DE Thomas Mikolajick, NamLab qGmbH, DE

Memory devices and technologies have undergone huge transformations in recent years and many industrially viable replacements to conventional technologies are on the brink of entering the market. The first paper in this session gives an overview of alternative memory technologies and how each can contribute or disrupt accepted memory hierarchies. The quest for a universal memory device is still underway, and the other papers in this session focus on various approaches for future memory devices. The second paper examines phase change memories, while magnetic memories are discussed in the third paper, both in terms of standard memory applications but also in terms of how they can improve logic performance. Resistive memories are the topic of the fourth paper, where new applications are considered - in FPGAs, NoCs and crossbars. The fifth paper in this session looks at low-cost memory with a printable manufacturing approach, leading to other applications and market segments.

1100

*

*

*

SEMICONDUCTOR MEMORY PERSPECTIVE

Roberto Bez, Micron, IT

THURSDAY			
1120	EXPLORING THE LIMITS OF PHASE CHANGE MEMORIES		
	Matthias Wuttig, RWTH Aachen University of Technology, DE		
1135	MAGNETIC MEMORIES: FROM DRAM REPLACEMENT TO ULTRA LOW POWER LOGIC CHIPS		
	Jean-Pierre Nozières, Spintec, FR		
1155	RESISTIVE MEMORIES: WHICH APPLICATIONS?		
	Fabien Clermidy ¹ , Natalija Jovanovic ¹ , Santhosh Onkaraiah ¹ , Houcine Oucheikh ¹ , Ogun Turkyilmaz ¹ , Olivier Thomas ¹ , Elisa Vianello ¹ , Jean-Michel Portal ² and Marc Bocquet ² ¹ CEA-LETI, FR; ² Université d'Aix-Marseille, FR		
1210	THINFILM PRINTED FERRO-ELECTRIC MEMORIES AND INTEGRATED PRODUCTS		
	Christer Karlsson and Peter Fischer, Thin Film Electronics AB, SE		
1230	LUNCH BREAK in Exhibition Area		
10.2	Wireless NoCs		
	Konferenz 6 1100 – 1230		
	Giorgos Dimitrakopoulos, Democritus University of Thrace, GR		
	Valeria Bertacco, University of Michigan, US		
pects of wire on energy ef on-chip ante power of dif	comprises three papers devoted to studying different as- eless NoC design and optimization. The first paper focuses ficiency, by effectively tuning the transmission power of ennas. The second paper compares the performance and ferent routing algorithms for wireless NoCs, while the explores the adoption of wireless NoCs in 3D chip designs.		
1100	AN ADAPTIVE TRANSMITTING POWER TECHNIQUE FOR ENERGY EFFICIENT MM-WAVE WIRELESS NOCS		
	Andrea Mineo ¹ , Maurizio Palesi ² , Giuseppe Ascia ¹ and Vincenzo Catania ¹		
	¹ University of Catania, IT; ² Kore University, IT PERFORMANCE EVALUATION OF WIRELESS NOCS IN PRESENCE		
1130	OF IRREGULAR NETWORK ROUTING STRATEGIES		
	Paul Wettin, Jacob Murray, Ryan Kim, Xinmin Yu, Partha Pande and Deukhyoun Heo, Washington State University, US		
1200	LOW-LATENCY WIRELESS 3D NOCS VIA RANDOMIZED SHORTCUT CHIPS		
	Hiroki Matsutani ¹ , Michihiro Koibuchi ² , Ikki Fujiwara ² , Takahiro Kagami ¹ , Yasuhiro Take ¹ , Tadahiro Kuroda ¹ , Paul Bogdan ³ , Radu Marculescu ⁴ and Hideharu Amano ¹ ¹ Keio University, JP; ² National Institute of Informatics, JP;		

³University of Southern California, US; ⁴Carnegie Mellon University, US

*

IP5-1, I	P5-2
----------	------

LUNCH BREAK in Exhibition Area

10.3

Green Computing Systems

Konferenz 1 1100 - 1230

Chair: Ayse Coskun, Boston University, US Co-Chair: Martino Ruggiero, University of Bologna, IT

This session discusses techniques to improve energy efficiency in large-scale computing systems, many-core systems, servers, and the cloud. The papers in this session particularly emphasize the practical experiences in academia and in industry.

DATE14

1130

1100

UNVEILING EURORA - THERMAL AND POWER CHARACTERIZATION OF THE MOST ENERGY-EFFICIENT SUPERCOMPUTER IN THE WORLD

Andrea Bartolini¹, Matteo Cacciari¹, Carlo Cavazzoni², Giampietro Tecchiolli³ and Luca Benini⁴ ¹University of Bologna, IT; ²CINECA, IT; ³EUROTECH, IT; ⁴Università di Bologna, IT

CONTENTION AWARE FREQUENCY SCALING ON CMPS WITH **GUARANTEED QUALITY OF SERVICE**

Hao Shen and Qinru Qiu, Syracuse University, US

1200

CONCURRENT PLACEMENT, CAPACITY PROVISIONING, AND **REQUEST FLOW CONTROL FOR A DISTRIBUTED CLOUD** INFRASTRUCTURE

Shuang Chen, Yanzhi Wang and Massoud Pedram, University of Southern California, US

IP5-3, IP5-4 IPS

LUNCH BREAK in Exhibition Area

10.4

System-level evaluation

Konferenz 2 1100 - 1230

Chair: Pablo Sanchez, University of Cantabria, ES Co-Chair: Florian Letombe, Synopsys, FR

The session presents system-level verification and simulation techniques, as well as specific solutions for particular system components. The first paper analyzes how to detect concurrency errors from multi-threaded software on a virtual platform. The second one proposes a hybrid simulation platform for cache configuration analysis. The last paper explores SSD verification challenges. The session is completed by three IPs that introduce novel approaches for parallel simulation and efficient NoC/Smart systems validation.

1100

AUTOMATIC DETECTION OF CONCURRENCY BUGS THROUGH EVENT ORDERING CONSTRAINTS

Luis Gabriel Murillo, Simon Wawroschek, Jeronimo Castrillon, Rainer Leupers and Gerd Ascheid, RWTH Aachen University, DE

IPS

1230

1130

1200

HARDWARE-BASED FAST EXPLORATION OF CACHE HIERARCHIES IN APPLICATION SPECIFIC MPSOCS

Isuru Nawinne, Josef Schneider, Haris Javaid and Sri Parameswaran, The University of New South Wales, AU

SSDEXPLORER: A VIRTUAL PLATFORM FOR FINE-GRAINED DESIGN SPACE EXPLORATION OF SOLID STATE DRIVES

Lorenzo Zuolo¹, Cristian Zambelli¹, Rino Micheloni², Salvatore Galfano³, Marco Indaco³, Stefano Di Carlo³, Paolo Prinetto³, Pirero Olivo¹ and Davide Bertozzi¹ ¹Università degli Studi di Ferrara, IT; ²PMC-Sierra, IT; ³Politecnico di Torino, IT

LUNCH BREAK in Exhibition Area

IP5-5, IP5-6

10.5

Analysis of Components and Systems

Konferenz 3 1100 – 1230

Chair: Frank Oppenheimer, OFFIS, DE Co-Chair: Todor Stefanov, Leiden University, NL

The first paper proposes a new static analysis approach based on segment graphs that identifies a tight set of potential access conflicts in segments that may-happen-in-parallel in system-level models. In the second paper, a technique for latency analysis for shared resource systems is introduced. The third paper proposes a method that improves the tradeoff between simulation speed and accuracy of performance models of architectures. Finally, the fourth paper deals with cross-correlating specification and RTL to discover versioning issues, poor documentation, and mismatches between specification and RTL.

п			
11	11	U	U)

MAY-HAPPEN-IN-PARALLEL ANALYSIS BASED ON SEGMENT GRAPHS FOR SAFE ESL MODELS

Weiwei Chen¹, Xu Han² and Rainer Doemer³ ¹University of California, Irvine, US; ²Qualcomm Inc., US; ³EECS, UC Irvine, US

1130

1200

1230

TIMING ANALYSIS OF FIRST-COME FIRST-SERVED SCHEDULED INTERVAL-TIMED DIRECTED ACYCLIC GRAPHS

Raymond Frijns¹, Shreya Adyanthaya¹, Sander Stuijk¹, Jeroen Voeten¹, Marc Geilen¹, Ramon Schiffelers² and Henk Corporaal¹ ¹Eindhoven University of Technology, NL; ²ASML, NL

A DYNAMIC COMPUTATION METHOD FOR FAST AND ACCURATE PERFORMANCE EVALUATION OF MULTI-CORE ARCHITECTURES

Sebastien Le Nours¹, Adam Postula² and Neil Bergmann² ¹University of Nantes, FR; ²University of Queensland, AU

CROSS-CORRELATION OF SPECIFICATION AND RTL FOR SOFT IP ANALYSIS

Bhanu Singh¹, Arunprasath Shankar¹, Francis Wolff¹, Christos Papachristou¹, Daniel Weyer² and Steve Clay² ¹Case Western Reserve University, US; ²Rockwell Automation, US

*

LUNCH BREAK in Exhibition Area

Multi-processor and distributed systems

Konferenz 4 1100 - 1230

Chair:	Orlando Moreir
Co-Chair:	Giuseppe Lipar

Orlando Moreira, Ericsson, NL **Giuseppe Lipari,** ENS - Cachan, FR

This session features new results in scheduling, allocation and management of real-time application in multi-core and distributed systems. The first paper presents a control algorithm for managing realtime tasks so to meet thermal constraints in a multi-core chip. The second paper proposes an algorithm for mixed-criticality task allocation in a multiprocessor platform. The third paper proposes a method for generating a schedule for a multi-mode application in a distributed system.

1100

THERMAL-AWARE FREQUENCY SCALING FOR ADAPTIVE WORKLOADS ON HETEROGENEOUS MPSOCS

Heng Yu, Rizwan Syed and Yajun Ha, National University of Singapore, SG

1200

PARTITIONED MIXED-CRITICALITY SCHEDULING ON MULTIPROCESSOR PLATFORMS

Chuancai Gu¹, Nan Guan², Qingxu Deng¹ and Wang Yi² ¹Northeastern University, CN; ²Uppsala University, SE

GENERATION OF COMMUNICATION SCHEDULES FOR MULTI-MODE DISTRIBUTED REAL-TIME APPLICATIONS

Akramul Azim, Gonzalo Carvajal, Rodolfo Pellizzoni and Sebastian Fischmeister, University of Waterloo, CA

LUNCH BREAK in Exhibition Area

Advances in Synthesis

Konferenz 5 1100 – 1230

Chair: John Hayes, University of Michigan, US Co-Chair: Kim Taemin, Intel Labs, US

Papers in this session address synthesis algorithms and tools at different levels, targeting power, area and delay minimization.

1130

1200

1215

*

PROVABLY MINIMAL ENERGY USING COORDINATED DVS AND POWER GATING

Nathaniel Conos, Saro Meguerdichian, Foad Dabiri and Miodrag Potkonjak, UCLA, US

A TREE ARBITER CELL FOR HIGH SPEED RESOURCE SHARING IN ASYNCHRONOUS ENVIRONMENTS

Syed Rameez Naqvi and Andreas Steininger, Vienna University of Technology, AT

AN EFFICIENT MANIPULATION PACKAGE FOR BICONDITIONAL BINARY DECISION DIAGRAMS

Luca Amaru, Pierre-Emmanuel Gaillardon and Giovanni De Micheli, EPFL, CH

SYNTHESIS ALGORITHM OF PARALLEL INDEX GENERATION UNITS

Yusuke Matsunaga, Kyushu University, JP

24-28 March 2014

DATE14

Dresden, Germany

10.8

IP5-7, IP5-8, IP5-9, IP5-10

LUNCH BREAK in Exhibition Area

EDA+3D+MEMS Innovation Agenda 2020 Fueling the Innovation Chain of Electronics

Exhibition Theatre 1100 - 1230

Organiser: Jürgen Haase, edacentrum, DE Moderator: Ahmed Jerraya, CEA-LETI, FR Panelists: Gabriel Kittler, X-FAB, DE Brandon Wang, Cadence, US Brent Gregory, Synopsys, US Horst Symanzik, Bosch-Sensortec GmbH, DE Gerd Teepe, GLOBALFOUNDRIES, DE

Today the most powerful innovations in the major industries and the most promising approaches to tackle burning societal challenges are substantially influenced by and depending from the innovations provided by the microelectronics industry. Breakthroughs in manufacturing technologies enable the realization of novel types of devices and of systems, which enable applications with fascinating functionality and enormous performance. However, this innovation chain is not operational without appropriate innovations in design technology: We need an innovation Agenda 2020 for design methodology and EDA tools fueling the innovation chain of electronics.

2014 the technologies for MEMS and for 3D chips have reached a maturity level that enables them to reshape our lives until 2020. This panel will discuss how to utilize these technologies: Which applications will become possible with the upcoming innovations in 3D and MEMS technologies, what kind of EDA innovations will be required in order to be able to implement these applications effectively and efficiently, yielding powerful yet reliable components and systems.

The set-up of the panel includes the manufacturers GLOBALFOUND-RIES and X-FAB, Bosch as leading supplier of technology and one of the MEMS pioneers as well as leading EDA vendors Cadence and Synopsys.

*

1230

LUNCH BREAK in Exhibition Area

11.0

Special Day Keynote

Saal 1 1330 - 1400

Organic semiconductors with conjugated electron system are currently intensively investigated for optoelectronic applications. This interest is spurred by novel devices such as organic light-emitting diodes (OLED), organic solar cells, and flexible electronics. I this talk, I will discuss some of the recent progress in realizing devices, in particular highly efficient white OLED for lighting and flexible organic solar cells.

11.1

ORGANIC ELECTRONICS - FROM LAB TO MARKETS

Karl Leo, Technische Universität Dresden, DE

SPECIAL DAY Embedded Tutorial: Alternatives to CMOS

Saal 1 1400 - 1530

Organisers: Ian O'Connor, Lyon Institute of Nanotechnology, FR Thomas Mikolajick, NamLab gGmbH, DE Chair: Aida Todri, LIRMM, FR Co-Chair: Thomas Mikolajick, NamLab gGmbH, DE

Alternative approaches to CMOS-based computing structures abound, for logic, memory, interconnect and interfaces. This embedded tutorial aims to give in-depth analyses of three promising technologies. The first paper covers spintronics and its use in logic and memory to achieve low-power computing architectures. Silicon photonics, with anticipated benefits for interconnect structures, is examined in the second paper. The third paper looks at the status of organic electronics and the properties of thin-film transistors for large displays and sensor arrays on flexible supports.

1400

1430

SPINTRONICS FOR LOW-POWER COMPUTING

Yue Zhang¹, Weisheng Zhao¹, Jacques-Olivier Klein¹, Wang Kang¹, Damien Querlioz¹, Youguang Zhang², Dafiné Ravelosona¹ and Claude Chappert¹

¹IEF - Univ. Paris Sud, FR; ²Univ. Beihang, CN

CHAMELEON: CHANNEL EFFICIENT OPTICAL NETWORK-ON-CHIP

Sébastien Le Beux¹, Hui Li¹, Ian O'Connor¹, Kazem Cheshmi², Xuchen Liu¹, Jelena Trajkovic² and Gabriela Nicolescu³ ¹Lyon Institute of Nanotechnology, FR; ²Concordia University, CA; ³Ecole Polytechnique de Montréal, CA

0

LOW-VOLTAGE ORGANIC TRANSISTORS FOR FLEXIBLE ELECTRONICS

Ute Zschieschang¹, Reinhold Rödel¹, Ulrike Kraft¹, Kazuo Takimiya², Tarek Zaki³, Florian Letzkus⁴, Jörg Butschke⁴, Harald Richter⁴, Joachim Burghartz⁴, Wei Xiong⁵, Boris Murmann⁵ and Hagen Klauk¹

¹Max Planck Institute for Solid State Research, DE; ²Riken Advanced Science Institute, JP; ³University of Stuttgart, DE; ⁴IMS CHIPS, DE; ⁵Stanford University, US

Wolfgang Ecker¹, Michael Velten¹, Leily Zafari¹ and Ajay Goyal² ¹Infineon Technologies, DE; ²Infineon Technologies, IN

*

ARCHIVED: ARCHITECTURAL CHECKING VIA EVENT DIGESTS FOR HIGH PERFORMANCE VALIDATION

Chang-Hong Hsu¹, Debapriya Chatterjee², Ronny Morad³, Raviv Gal³ and Valeria Bertacco¹ ¹University of Michigan, Ann Arbor, US; ²IBM Research - Austin, US: 3IBM Research - Haifa, IL

DATE14

Dresden, Germany

24-28 March 2014

IPS

1530

EFFECTIVE POST-SILICON FAILURE LOCALIZATION USING DYNAMIC PROGRAM SLICING

Ophir Friedler, Wisam Kadry, Arkadiy Morgenshtein, Amir Nahir and Vitali Sokhin, IBM Research - Haifa, IL

1515 DESIGN-FOR-DEBUG ROUTING FOR FIB PROBING

Chia-Yi Lee, Tai-Hung Li and Tai-Chen Chen, National Central University, TW

IP5-13, IP5-14

COFFEE BREAK in Exhibition Area

11.5

Memory Resource Allocation and Scheduling in MPSoC

Konferenz 3 1400 - 1530

Chair: Andreas Herkersdorf, Technische Universität München, DE Co-Chair: Donatella Sciuto, Politecnico di Milano, IT

Low-latency data access and efficient interprocess communication are critical to MPSoC performance and power efficiency. This session introduces innovative approaches for data placement, memory bandwidth allocation and scheduling techniques in MPSoC architectures with heterogeneous 2D/3D memory hierarchies.

```
1400 SCENARIO-AWARE DATA PLACEMENT AND MEMORY AREA
ALLOCATION FOR MULTI-PROCESSOR SYSTEM-ON-CHIPS WITH
RECONFIGURABLE 3D-STACKED SRAMS
```

Meng-Ling Tsai, Yi-Jung Chen, Yi-Ting Chen and Ru-Hua Chang, Department of Computer Science and Information Engineering, National Chi Nan University, TW

OPTIMIZED BUFFER ALLOCATION IN MULTICORE PLATFORMS

Maximilian Odendahl¹, Andres Goens¹, Rainer Leupers¹, Gerd Ascheid¹, Benjamin Ries¹, Berthold Vöcking¹ and Tomas Henriksson²

¹RWTH Aachen University, DE; ²Huawei Technologies, SE

MEMORY-CONSTRAINED STATIC RATE-OPTIMAL SCHEDULING OF SYNCHRONOUS DATAFLOW GRAPHS VIA RETIMING

Xue-Yang Zhu¹, Marc Geilen², Twan Basten³ and Sander Stuijk² ¹State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, CN; ²Department of Electrical Engineering, Eindhoven University of Technology, NL; ³Department of Electrical Engineering, Eindhoven University of Technology. Embedded Systems Institute, NL

*

1515

1430

1500

A CONSTRAINT-BASED DESIGN SPACE EXPLORATION FRAMEWORK FOR REAL-TIME APPLICATIONS ON MPSOCS

Kathrin Rosvall and Ingo Sander, KTH Royal Institute of Technology, SE

IPS IP5-15, IP5-16

COFFEE BREAK in Exhibition Area

11.6

System-Level Thermal Estimation and Management

Konferenz 4 1400 - 1530

Chair: Co-Chair:

Coskun Ayse, Boston University, US Oliver Bringmann, University of Tübingen, DE

This session deals with thermal management issues in multicore and battery-operated systems. In particular the papers cover three orthogonal aspects, specifically, thermal estimation and tracking from sparse sensor readings, proactive dynamic thermal management via task migration, and thermal management of hybrid energy storage devices based on idle period insertion.

1400 MINIMAL SPARSE OBSERVABILITY OF COMPLEX NETWORKS: APPLICATION TO MPSOC SENSOR PLACEMENT AND RUN-TIME THERMAL ESTIMATION & TRACKING

Santanu Sarma and Nikil Dutt, University of California Irvine, US

1500

MDTM: MULTI-OBJECTIVE DYNAMIC THERMAL MANAGEMENT FOR ON-CHIP SYSTEMS

Heba Khdr, Thomas Ebi, Muhammad Shafique, Hussam Amrouch and Jörg Henkel, Karlsruhe Institute of Technology (KIT), DE

THERMAL MANAGEMENT OF BATTERIES USING A HYBRID SUPERCAPACITOR ARCHITECTURE

Donghwa Shin¹, Massimo Poncino² and Enrico Macii³ ¹Department of Computer Engineering, Yeungnam University, KR; ²Politecnico di Torino, IT; ³Dipartimento di Automatica e Informatica, Politecnico di Torino, IT

IP5-17, IP5-18, IP5-19

COFFEE BREAK in Exhibition Area

11.7

Power and Emerging Technologies in Reconfigurable Computing

Konferenz 5 1400 - 1530

Chair: Diana Goehringer, Ruhr-University Bochum (RUB), DE Co-Chair: Fabrizio Ferrandi, Politecnico di Milano, IT

The first two papers in this session propose new architectures that take advantage of emerging nonvolatile memory technologies. The third paper proposes a battery cell aware task partitioning and mapping to maximize battery runtime.

1400

EXPLOITING STT-NV TECHNOLOGY FOR RECONFIGURABLE, HIGH PERFORMANCE, LOW POWER, AND LOW TEMPERATURE FUNCTIONAL UNIT DESIGN

Adarsh Reddy¹, Hamid Mahmoodi² and Houman Homayoun¹ ¹George Mason University, US; ²San Francisco State University, US

1500

IPS

1530

11.8

Chair:

RECONFIGURABLE COMPUTING PLATFORMS Shouyi Yin1, Peng Ouyang1, Leibo Liu2 and Shaojun Wei1 ¹Tsinghua University, CN; ²Institute of Microelectronics and The IP5-1 National Lab for Information Science and Technology, Tsinghua University, CN IP5-20, IP5-21, IP5-22 **COFFEE BREAK** in Exhibition Area **Embedded Tutorial: GPGPUs:** how to combine high IP5-2 computational power with high reliability Exhibition Theatre 1400 - 1530 IP5-3 Organiser: Matteo Sonza Reorda, Politecnico di Torino, IT Dimitris Gizopoulos, University of Athens, GR **Co-Chair:** Rob Aitken, ARM, US The embedded tutorial aims at providing with an updated view on IP5-4 what GPGPUs can provide not only in terms of performance and power, but also in terms of reliability, and how the latter can be evaluated and possibly improved. **RELIABILITY REQUIREMENTS FOR GPUS IN HPC** Nathan A. DeBardeleben¹, Leonardo Bautista Gomez² and Franck Cappello² DF ¹Los Alamos National Laboratory, US; ²Argonne National Laboratory, US IP5-5

1400

GPU RELIABILITY ASSESSMENT AND ENHANCEMENT

Paolo Rech¹, Luigi Carro¹ and Steve Keckler² ¹UFRGS, BR: ²NVIDIA, US

EVALUATING THE ROBUSTNESS OF GPU APPLICATIONS 1500 THROUGH FAULT INJECTION

> Karthik Pattabiraman¹, Bo Fang¹ and Sudhanva Gurumurthi² ¹UBC, CA; ²AMD, US

> > -

A POWER-EFFICIENT RECONFIGURABLE ARCHITECTURE USING

Ali Ahari¹, Hossein Asadi¹, Behnam Khaleghi¹ and Mehdi Tahoori² ¹Sharif University of Technology, IR; ²Karlsruhe Institute of

EXTENDING LIFETIME OF BATTERY-POWERED COARSE-GRAINED

PCM CONFIGURATION TECHNOLOGY

Technology, DE

COFFEE BREAK in Exhibition Area

IP5

Conference Level, Foyer 1530 - 1600

Interactive Presentations run simultaneously during a 30-minute slot. A poster associated to the IP paper is on display throughout the afternoon. Additionally, each IP paper is briefly introduced in a oneminute presentation in a corresponding regular session, prior to the actual Interactive Presentation.

Interactive Presentations

HYBRID WIRE-SURFACE WAVE ARCHITECTURE FOR ONE-TO-MANY COMMUNICATION IN NETWORK-ON-CHIP

Ammar Karkar¹, Nizar Dahir¹, Ra'ed Al-Duiailv², Kenneth Tong³, Terrence Mak⁴ and Alex Yakovlev¹

¹School of Electrical and Electronic Engineering, Newcastle University, Newcastle upon Tyne, GB; ²General Systems Company, Baghdad - Iraq, IQ; 3Depart- ment of Electrical and Electronic Engineering, University College London, GB; ⁴Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, Hong, CN

FAILURE ANALYSIS OF A NETWORK-ON-CHIP FOR REAL-TIME MIXED-CRITICAL SYSTEMS

Eberle A Rambo, Alexander Tschiene, Jonas Diemer, Leonie Ahrendts and Rolf Ernst

Technische Universität Braunschweig, DE

COOLIP: SIMPLE YET EFFECTIVE JOB ALLOCATION FOR DISTRIBUTED THERMALLY-THROTTLED PROCESSORS

Pratyush Kumar, Hoeseok Yang, Iuliana Bacivarov and Lothar Thiele, ETH Zurich, CH

ENERGY OPTIMIZATION IN 3D MPSOCS WITH WIDE-I/O DRAM USING TEMPERATURE VARIATION AWARE BANK-WISE REFRESH

Mohammadsadegh Sadri¹, Matthias Jung², Christian Weis², Norbert Wehn² and Luca Benini¹

¹Department of Electrical, Electronic and Information Engineering (DEI) University of Bologna, IT; ²Microelectronic Systems Design Research Group, University of Kaiserslautern,

EFFICIENT SIMULATION AND MODELLING OF NON-**RECTANGULAR NOC TOPOLOGIES**

Ji Qi and Mark Zwolinski, University of Southampton, GB

MOVING FROM CO-SIMULATION TO SIMULATION FOR **EFFECTIVE SMART SYSTEMS DESIGN**

Franco Fummi¹, Michele Lora², Francesco Stefanni³, Dimitrios Trachanis⁴, Jan Vanhese⁴ and Sara Vinco² ¹University of Verona, EDALab s.r.l., IT; ²University of Verona, IT: ³EDALab s.r.l., IT: ⁴Agilent Technologies, BE

IP5-7

IP5-6

AUTOMATING DATA REUSE IN HIGH-LEVEL SYNTHESIS

Wim Meeus¹ and Dirk Stroobandt² ¹Imec and Ghent University, BE; ²Ghent University, BE

A UNIVERSAL SYMMETRY DETECTION ALGORITHM

Peter Maurer, Dept. of Computer Sci., Baylor University, US

IP5-10

IP5-11

IP5-13

IP5-14

IP5-15

IP5-16

IP5-17

IP5-18

OPTIMIZATION OF DESIGN COMPLEXITY IN TIME-MULTIPLEXED CONSTANT MULTIPLICATIONS

Levent Aksoy¹, Paulo Flores² and Jose Monteiro³ ¹INESC-ID, PT; ²INESC-ID/IST ULisbon, PT; ³INESC-ID / IST, ULisbon, PT

HARDWARE PRIMITIVES FOR THE SYNTHESIS OF MULTITHREADED ELASTIC SYSTEMS

Giorgos Dimitrakopoulos¹, Seitanidis Ioannis², Anastasios Psarras¹, Konstantinos Tsiouris¹, Pavlos Matthaiakis³ and Jordi Cortadella⁴

¹Democritus University of Thrace, GR; ²Democritus University of Thrac, GR; ³Mentor Graphics, FR; ⁴Universitat Politecnica de Catalunya, ES

DCM: AN IP FOR THE AUTONOMOUS CONTROL OF OPTICAL AND ELECTRICAL RECONFIGURABLE NOCS.

Wolfgang Büter¹, Christof Osewold¹, Daniel Gregorek¹ and Alberto Garcia-Ortiz²

¹University of Bremen, DE; ²ITEM (U.Bremen), DE

IP5-12 MINIMALLY BUFFERED SINGLE-CYCLE DEFLECTION ROUTER

Gnaneswara Rao Jonna¹, John Jose¹, Rachana Radhakrishnan² and Madhu Mutyam¹

¹Indian Institute of Technology, Madras., IN; ²Rajagiri School of Engineering & Technology, Kochhi., IN

FUNCTIONAL TEST GENERATION GUIDED BY STEADY-STATE PROBABILITIES OF ABSTRACT DESIGN

Jian Wang¹, Huawei Li², Tao Lv², Tiancheng Wang² and Xiaowei Li²

¹Institute of Computing Technology, Chinese Academy of Sc iences, CN; ²Institute of Computing Technology, Chinese Academy of Sciences, CN

AUTOMATED SYSTEM TESTING USING DYNAMIC AND RESOURCE RESTRICTED CLIENTS

Mirko Caspar, Mirko Lippmann and Wolfram Hardt, Technische Universität Chemnitz, DE

RELIABILITY-AWARE MAPPING OPTIMIZATION OF MULTI-CORE SYSTEMS WITH MIXED-CRITICALITY

Shin-Haeng Kang¹, Hoeseok Yang², Sungchan Kim³, Iuliana Bacivarov², Soonhoi Ha¹ and Lothar Thiele² ¹Seoul National University, KR; ²ETH Zurich, CH; ³Chonbuk National University, KR

FROM SIMULINK TO NOC-BASED MPSOC ON FPGA

Francesco Robino and Johnny Öberg, KTH Royal Institute of Technology, SE

THERMAL ANALYSIS AND MODEL IDENTIFICATION TECHNIQUES FOR A LOGIC + WIDEIO STACKED DRAM TEST CHIP

 $\mbox{Francesco Beneventi}^1,$ Andrea Bartolini 1, Pascal Vivet 2, Denis Dutoit 2 and Luca Benini 1

¹DEI - University of Bologna, IT; ²CEA-Leti, Grenoble, FR

ADAPTIVE POWER ALLOCATION FOR MANY-CORE SYSTEMS INSPIRED FROM MULTIAGENT AUCTION MODEL

Xiaohang Wang¹, Baoxin Zhao¹, Terrence Mak², Mei Yang³, Yingtao Jiang³, Masoud Daneshtalab⁴ and Maurizio Palesi⁵ ¹Guangzhou Institute of Advanced Technology, CN; ²The Chinese University of Hong Kong, CN; ³University of Nevada, Las Vegas, US; ⁴University of Turku, FI; ⁵University of Enna, Kore, IT

UNIFIED, ULTRA COMPACT, QUADRATIC POWER PROXIES FOR MULTI-CORE PROCESSORS

Muhammad Yasin¹, Ibrahim (Abe) Elfadel² and Anas Shahrour² ¹New York University - Abu Dhabi, AE; ²Masdar Institute of Science and Technology, AE

3D FPGA USING HIGH-DENSITY INTERCONNECT MONOLITHIC INTEGRATION

Ogun Turkyilmaz¹, Gerald Cibrario², Olivier Rozeau², Perrine Batude² and Fabien Clermidy³

¹CEA-LETI, Minatec Campus, FR; ²CEA, FR; ³CEA-LETI, FR

JOINT COMMUNICATION SCHEDULING AND INTERCONNECT SYNTHESIS FOR FPGA-BASED MANY-CORE SYSTEMS

Alessandro Cilardo, Edoardo Fusella, Luca Gallo and Antonino Mazzeo, University of Naples Federico II, IT

IP5-22

A NOVEL EMBEDDED SYSTEM FOR VISION TRACKING

Antonis Nikitakis¹, Theofilos Paganos¹ and Ioannis Papaefstathiou²

¹Technical University of Crete, Department of Electronic and Computer Engineering Kounoupidiana, Chania, Crete, GR73100, Greece, GR; ²Synelixis Solutions Ltd, Farmakidou 10,Chalkida, GR34100, Greece, GR

After the last IP Session of each day, the "Best IP of the Day" will be awarded.

12.1

SPECIAL DAY Hot Topic: The future of interfacing to the natural world

Saal 1 1600 - 1730

Organisers: Ian O'Connor, Lyon Institute of Nanotechnology, FR Thomas Mikolajick, NamLab qGmbH, DE

Chair: Co-Chair:

Michael Huebner, Ruhr Universitaet Bochum, DE Ian O'Connor, Lyon Institute of Nanotechnology, FR

Challenges for acquiring and processing data from the real world includes the development of interfaces capable of extracting relevant information from massive sensor networks or from living organisms, sifting through the wealth of data to arrive systematically at a meaningful conclusion, and building hardware platforms suited to carry out these operations in an energy-efficient way. The first paper in this session looks at the necessarily complex processing of chemical information with hardware components that are capable of responding to various chemical conditions. Interfaces to living organisms are examined in the second paper, which discusses challenges and approaches for efficient detection of disease. In the third paper, novel hardware devices and architectures are explored for use in energy-efficient video analysis applications such as movement detection and face recognition. The fourth paper discusses handling of complex data with large-scale GPU-based recurrent networks, exploiting specific features of the data to improve energy efficiency.

DATE14

1600

24-28 March 2014

INTEGRATED CIRCUITS PROCESSING CHEMICAL INFORMATION: **PROSPECTS AND CHALLENGES**

Andreas Richter, Axel Voigt, René Schüffny, Stephan Henker and Marcus Völp, Technische Universität Dresden, DE

INTERFACING TO LIVING CELLS

Rudy Lauwereins, IMEC, BE

VIDEO ANALYTICS USING BEYOND CMOS DEVICES

Vijaykrishnan Narayanan¹, Gert Cauwenberghs², Donald Chiarulli³, Suman Datta⁴, Steve Levitan³ and Philip Wong⁵ ¹Penn State University, US; ²University of California at San Deigo, US; ³University of Pittsburgh, US; ⁴The Pennsylvania State University, US; 5Stanford University, US

1645

ENERGY EFFICIENT NEURAL NETWORKS FOR BIG DATA ANALYTICS

Wang Yu, Boxun Li, Rong Luo, Yiran Chen, Ningyi Xu and Huazhong Yang, Tsinghua University, CN

12.2

1

1

1700

Hot Topic: How Secure are PUFs **Really? On the Reach and Limits** of Recent PUF Attacks

Konferenz 6 1600 - 1730

Organiser: Ulrich Rührmair, TU München, DE Chair: Ulf Schlichtmann, TU München, DE

PUFs are an emerging and promising security primitive. However, some strong attacks on their core security features have been reported recently, for example on their unclonability. We discuss the reach, but also the limits of these attacks, aiming at a well-balanced treatment, and also evaluate the future perspectives of the field.

600	PUFS AT A GLANCE
	Ulrich Rührmair ¹ and Daniel E. Holcomb² ¹TU München, DE; ²University of Michigan, US
615	PUF MODELING ATTACKS: AN INTRODUCTION AND OVERVIEW
	Ulrich Rührmair ¹ and Jan Sölter ² ¹ TU München, DE; ² Freie Universität Berlin, DE
630	HYBRID SIDE-CHANNEL / MACHINE-LEARNING ATTACKS ON PUFS: A NEW THREAT?
	Xiaolin Xu and Wayne Burleson, Umass, Amherst, US
645	PHYSICAL VULNERABILITIES OF PHYSICALLY UNCLONABLE FUNCTIONS
	Clemens Helfmeier, Dmitry Nedospasov, Shahin Tajik, Christiar Bait and Joan Birro Saifart, Tachnicha Universität Barlin, DE

Shahin Tajik, Christian Boit and Jean-Pierre Seifert, Technische Universität Berlin, DE

PROTOCOL ATTACKS ON ADVANCED PUF PROTOCOLS AND COUNTERMEASURES

Marten van Dijk¹ and Ulrich Rührmair² ¹University of Connecticut, US; ²TU München, DE

OUO VADIS, PUF? TRENDS AND CHALLENGES OF EMERGING PHYSICAL-DISORDER BASED SECURITY

Masoud Rostami¹, Farinaz Koushanfar¹, James Wendt² and Miodrag Potkonjak² ¹Rice University, US; ²UCLA, US

Multimedia Systems

Konferenz 1 1600 – 1730

Chair: Theocharides Theocharis, University of Cyprus, CY Co-Chair: Cristiana Bolchini, Politecnico di Milano, IT

The session presents designs for energy efficient and flexible implementations of advanced video coders or image acquisition/processing systems

1600

FLEXIBLE AND SCALABLE IMPLEMENTATION OF H.264/AVC ENCODER FOR MULTIPLE RESOLUTIONS USING ASIPS

Hong Chinh Doan, Haris Javaid and Sri Parameswaran, School of Computer Science and Engineering, University of New South Wales, Sydney, AU

A FLEXIBLE ASIP ARCHITECTURE FOR CONNECTED COMPONENTS LABELING IN EMBEDDED VISION APPLICATIONS

Juan Fernando Eusse¹, Rainer Leupers¹, Gerd Ascheid¹, Patrick Sudowe¹, Bastian Leibe¹ and Tamon Sadasue² ¹RWTH Aachen University, DE; ²RICOH Company LTD., JP

IMAGE PROGRESSIVE ACQUISITION FOR HARDWARE SYSTEMS

Jianxiong Liu, Christos Bouganis and Peter Y.K. Cheung, Imperial College London, GB

1715

HIGH-QUALITY REAL-TIME HARDWARE STEREO MATCHING BASED ON GUIDED IMAGE FILTERING

Christos Ttofis and Theocharis Theocharides, University of Cyprus, CY

12.4 **Physical Aspects**

Konferenz 2 1600 – 1730

Chair: Carl Sechen, University of Texas at Dallas, US Jens Lienig, TU Dresden, DE Co-Chair:

This session focuses on contemporary issues in physical design. The first paper concerns detailed placement for sub-20nm technologies. Then pattern matching for more efficient hotspot detection is introduced. Finally, a flow for minimizing the number of wiring layers on multichip interposers is presented.

1600

OPTIMIZATION OF STANDARD CELL BASED DETAILED PLACEMENT FOR 16 NM FINEET PROCESS

Yuelin Du and Martin D. F. Wong, University of Illinois at Urbana-Champaign, US

1630

SIGNATURE INDEXING OF DESIGN LAYOUTS FOR HOTSPOT DETECTION

Cristian Andrades¹, Andrea Rodriguez¹ and Charles Chiang² ¹Universidad de Concepcion, CL; ²Synopsys Inc., US

DATE14

Dresden, Germany

24-28 March 2014

METAL LAYER PLANNING FOR SILICON INTERPOSERS WITH CONSIDERATION OF ROUTABILITY AND MANUFACTURING COST

Wen-Hao Liu, Tzu-Kai Chien and Ting-Chi Wang, National Tsing Hua University, TW

12.5

System-level Design Space Exploration

Konferenz 3 1600 – 1730

Chair:Frederic Petrot, TIMA, FRCo-Chair:Luciano Lavagno, Politecnico di Torino, IT

The sessions discusses novel aspects and objectives in the exploration of embedded architectures. Papers cover topics including integration of diagnosis, approximate circuit design, custom instruction optimization, and scheduling issues.

1600

NON-INTRUSIVE INTEGRATION OF ADVANCED DIAGNOSIS FEATURES IN AUTOMOTIVE E/E-ARCHITECTURES

Ulrich Abelein¹, Alejandro Cook², Piet Engelke³, Michael Glaß⁴, Felix Reimann⁴, Laura Rodríguez Gómez², Thomas Russ⁴, Jürgen Teich⁴, Dominik Ull² and Hans-Joachim Wunderlich² ¹AUDI AG, Ingolstadt, DE; ²University of Stuttgart, DE; ³Infineon Technologies AG, DE; ⁴University of Erlangen-Nuremberg, DE

ABACUS: A TECHNIQUE FOR AUTOMATED BEHAVIORAL SYNTHESIS OF APPROXIMATE COMPUTING CIRCUITS

Kumud Nepal, Yueting Li, R. Iris Bahar and Sherief Reda, Brown University, Providence, Rhode Island, US

1700 AUTOMATIC GENERATION OF CUSTOM SIMD INSTRUCTIONS FOR SUPERWORD LEVEL PARALLELISM

Taemin Kim and Yatin Hoskote, Intel/Intel Labs, US

SYSTEM-LEVEL SCHEDULING OF REAL-TIME STREAMING APPLICATIONS USING A SEMI-PARTITIONED APPROACH

Emanuele Cannella, Mohamed Bamakhrama and Todor Stefanov, Leiden University, NL

12.6

Error Resilience and Power Management

Konferenz 4 1600 - 1730

Chair: William Fornaciari, Politecnico di Milano - DEIB, IT Co-Chair: Kim Gruettner, OFFIS, DE

This session addresses the trade-off between accuracy and power consumption and the management of multi core/multi systems. The power management is addressed at several abstraction levels from circuit and performance counters up to the system level (operating system).

1600

100

ASLAN: SYNTHESIS OF APPROXIMATE SEQUENTIAL CIRCUITS

Ashish Ranjan, Arnab Raha, Swagath Venkataramani, Kaushik Roy and Anand Raghunathan, PURDUE UNIVERSITY, US

1700

1715

VRCON: DYNAMIC RECONFIGURATION OF VOLTAGE REGULATORS IN A MULTICORE PLATFORM

Woojoo Lee, Yanzhi Wang and Massoud Pedram, University of Southern California, US

COARSE-GRAINED BUBBLE RAZOR TO EXPLOIT THE POTENTIAL OF TWO-PHASE TRANSPARENT LATCH DESIGNS

Hayoung Kim, Jae-joon Kim, Sungjoo Yoo, Sunggu Lee and Dongyoung Kim, POSTECH, KR

FEPMA: FINE-GRAINED EVENT-DRIVEN POWER METER FOR ANDROID SMARTPHONES BASED ON DEVICE DRIVER LAYER EVENT MONITORING

Kitae Kim¹, Donghwa Shin², Qing Xie³, Yanzhi Wang³, Massoud Pedram³ and Naehyuck Chang¹

¹Seoul National University, KR; ²Politecnico di Torino, IT; ³University of Southern California, US

Built-in Self-Test Solutions for Mixed-Signal and RF ICs

Konferenz 5 1600 - 1730

12.7

Jacob A. Abraham, University of Texas, US Marian Verhelst, KU Leuven, BE

Presentations in this session offer solutions to equip mixed-signal and RF circuits with built-in self-test capabilities. These solutions include the use of an on-chip neural network that maps test signatures directly to a pass/fail decision, loopback test where the transmitter is used to test the receiver, and a reconfiguration principle for pipelined data converters.

AN ANALOG NON-VOLATILE NEURAL NETWORK PLATFORM FOR PROTOTYPING RF BIST SOLUTIONS

Dzmitry Maliuk¹ and Yiorgos Makris² ¹Yale University, US; ²University of Texas at Dallas, US

BUILT-IN SELF-TEST AND CHARACTERIZATION OF POLAR TRANSMITTER PARAMETERS IN THE LOOP-BACK MODE

Jae Woong Jeong¹, Sule Ozev¹, Shreyas Sen², Vishwanath Natarajan² and Mustapha Slamani³ ¹Arizona State University, US; ²Intel Corporation, US; ³IBM Corp., US

A FLEXIBLE BIST STRATEGY FOR SDR TRANSMITTERS

Emanuel Dogaru¹, Filipe Vinci dos Santos² and William Rebernak¹ ¹Thales Communications & Security, FR; ²Thales Chair on Advanced Analog Design, SUPELEC, FR

1715

SIGMA-DELTA TESTABILITY FOR PIPELINE A/D CONVERTERS

Antonio Jose Gines Arteaga and Gildas Leger, Instituto de Microelectronica de Sevilla, IMSE-CNM, (CSIC - Universidad de Sevilla), ES 12.8

Panel: Future SoC verification methodology: UVM evolution or revolution?

Exhibition Theatre 1600 – 1730

Organiser: Alex Goryachev, IBM Research - Haifa, IL Chair: Rolf Drechsler, University of Bremen/DFKI, DE

It is a recent trend that SoCs are becoming more similar to servers. Many SoCs today are no longer tied to a single application and look more like general purpose PCs and high-end servers. Smartphones are the most notable example of this, but we are also seeing this with TV chips, in-car controllers, network routers, and more. This trend is occurring in parallel to the constantly growing complexity of SoCs, which support diverse IO interfaces and devices, and have complex architectures including multiple heterogeneous cores, multi-level caches, and multiple IO bridges.

Today, common practice for verification is based on Universal Verification Methodology (UVM), which, at the system level, is built on reusing and combining unit-level environments, followed by running real software on an SoC. This methodology leaves a large gap. In high-end systems, this gap is covered by system-level verification that focuses on HW-only system integration. This level has its own methodology, dedicated environment, set of tools, and teams. It looks at the system as a whole and is not based on reusing lower level environments.

Formal methods are a field of intensive research, but they have not been adopted by the industry for SoC-level verification.

In this panel leading experts from industry (both users and vendors) and academy will discuss the future of SoC verification methodology. Is the gap in today's SoC verification methodology significant? Is it growing? Or perhaps it does not exist? What is the right way to close the gap, if one exists? Is it sufficient to extend UVM capabilities (e.g., SystemC, TLM) or are dedicated tools and methodology need-ed? Are formal methods ready to play a significant role in SoC-level verification? In general, we would like to determine the importance of system-level verification and its unique needs—whether generators, checking, coverage, or teams.

Panelists: Christophe Chevallaz, STMicroelectronics, FR Franco Fummi, University of Verona, IT Alan J. Hu, University of British Columbia, Vancouver, CA Ronny Morad, IBM Research - Haifa, IL Frank Schirrmeister, Cadence Design Systems, US

*

FRIDA WORKSHUPS

FRIDAY 28 MARCH, 2014

Chairs: Lorena Anghel, TIMA, FR Cristiana Bolchini, Politecnico di Milano, IT

This is the twelfth edition of DATE Friday's Workshops initiative, started in 2003 and that has hosted workshops on a variety of topics, attracting every year more and more researchers and designers.

The topics have been changing during the years, following the trend on current and emerging issues in design, test, software and EDA, taking the floor after the regular conference programme running throughout the week. The workshops offer a unique opportunity to present and discuss new and in-progress outcomes as well as experiences and visions.

The Friday's Workshops programme for DATE 2014 includes eight workshop themes, presenting innovative ideas on heterogeneous computing architectures to memristor and cyber-physical systems, from design automation to test and dependability.

For attendees interested in dependable computing, two workshops are available, one focused on GPUs, becoming increasingly popular also for non-graphic intensive computaton, the other on multi-core architectures in the nanotechnology era. Cyber-Physical Systems are the focus of another workshop, dealing with simulation for analyzing, designing and evaluating CPS. A workshop on heterogeneous computing will present the emerging trends and discuss challenges in this area that is receiving a lot of attention, given the variety of available computing resources. This plurality of resources is also the topic of a workshop on many-core embedded systems, investigating the performance, power and predictability aspects of these architectures. Design automation is addressed in a workshop with respect to understanding hardware designs, presenting novel contributions in the area. A new edition of the successful workshop on 3D integration is proposed this year, with new solutions and open challenges. Memristors are the focus of a workshop aimed at proposing a multidiscilinary forum on the latest advances in the field.

Friday's Workshops attendees should choose in advance one workshop among W1, W2, W3, W4, W5, W6, W7 or W8. The workshops run from 0830 until 1700. The individual timetables for each workshop may vary, and for the detailed version of the workshop programmes, visit the workshop webpages. DATE14

DATE14

Dresden, Germany

24-28 March 2014

W1 International Workshop on **Dependable GPU Computing** Konferenz 1 0830 - 1700 **Organisers:** Dimitris Gizopoulos, University of Athens, GR Hans-Joachim Wunderlich, University of Stuttgart, DE Paolo Prinetto, Politecnico di Torino, IT Many-core hardware accelerators offer significant speedup for parallel applications in different computing segments. Some are originally architected for general-purpose parallel computing while others, like Graphics Processing Units (GPUs), are initially designed for graphics applications, only. GPUs are intensively used today for general-purpose computing (GPGPU computing) through the employment of effective software development frameworks. GPUs and other many-core accelerators have penetrated a very wide range of applications: from embedded and low-power devices to the highest performance supercomputers. This workshop focuses on an important aspect of GPUs and massively parallel hardware accelerators: dependability and corresponding performance and power/energy considerations. GPUs and accelerators implemented in modern manufacturing technologies are vulnerable (like all other chips) to transient as well as to permanent faults due to radiation, manufacturing defects, variability, aging, etc. In general-purpose computing, the correctness of operation has a much higher priority than in graphics and the applications are expected to deliver correct and fast results. Such dependability provision can be realized at different levels of abstraction and affects the delivered performance of the application as well as it its power/energy behavior. Industry and academia views on the dependability of GPUs will be discussed during the workshop.

OPENING SESSION **OPENING REMARKS**

Dimitris Gizopoulos¹, Hans-Joachim Wunderlich² and Paolo Prinetto³ ¹University of Athens, GR; ²University of Stuttgart, DE; ³Politecnico di Torino, IT

KEYNOTE 1: 0830 **GPGPU FOR DEPENDABLE SYSTEMS – A BLESSING OR A CURSE?**

Avi Mendelson, Technion, IL

INVITED TALK 1

GPGPU RELIABILITY – CHALLENGES AND RESEARCH DIRECTIONS Sudhanva Gurumurthi, AMD, US

SESSION 1 - "SOFTWARE APPROACHES FOR GPUS DEPENDABILITY ENHANCEMENT"

Chair: Murali Annavaram, University of Southern California, Los Angeles, US Co-Chair: Amir Nahir, IBM Research, IL

*

*

*

AN IMPROVED FAULT MITIGATION STRATEGY FOR CUDA FERMI GPUS 0945 Stefano Di Carlo, Giulio Gambardella, Ippazio Martella, Paolo Prinetto, Daniele Rolfo and Pascal Trotta Politecnico di Torino, IT

1005	SOFTWARE-BASED TECHNIQUES FOR REDUCING THE VULNERABILITY OF GPU APPLICATIONS
	Si Li ¹ , Vilas Sridharan ² , Sudhanva Gurumurthi ² and Sudhakar Yalamanchili ¹
	¹ Georgia Tech., US
	² AMD, US
1025	A-ABFT: AUTONOMOUS ALGORITHM-BASED FAULT TOLERANCE ON GPUS
	Claus Braun, Sebastian Halder and Hans-Joachim Wunderlich University of Stuttgart, DE
1045	COFFEE BREAK+POSTERS
1130	INVITED TALK 2
	RELIABLE ACCELERATION – RELIABILITY IN A WORLD OF GPUS & OTHER SPECIAL PURPOSE ACCELERATORS Arijit Biswas, Intel , US
1200	LUNCH
1300	KEYNOTE 2:
	GPU RELATED ERRORS IN LARGE SCALE SYSTEMS: A STUDY OF
	BLUE WATERS SUPERCOMPUTER AT NCSA-ILLINOIS Ravishankar K. Iyer
	University of Illinois at Urbana-Champaign, US
1345	SESSION 2 – "FAULT DETECTION AND TOLERANCE IN GPUS"
	Chair: Nathan DeBardeleben, Los Alamos National Laboratory, US Co-Chair: Hans-Joachim Wunderlich, University of Stuttgart, DE
1345	BENEFITS AND COUNTERMEASURES OF INCREASING THE GPU
	CODE DEGREE OF PARALLELISM
	Paolo Rech and Luigi Carro, UFRGS, BR
1405	ON THE EVALUATION OF SOFT-ERRORS DETECTION TECHNIQUES FOR GPGPUS
	Davide Sabena ¹ , Matteo Sonza Reorda ¹ , Luca Sterpone ¹ , Paolo
	Rech² and Luigi Carro² ¹Politecnico di Torino
	²UFRGS, BR
1425	TOLERATING HARD FAULTS IN GPGPUS
	Waleed Dweik, Mohammad AbdelMajeed and Murali Annavaram University of Southern California, US
1445	COFFEE BREAK
1515	PANEL SESSION
	Organiser: Dimitris Gizopoulos, University of Athens, GR
1515	FAULTS IN CPUS AND GPUS: SAME OR DIFFERENT PROBLEMS?
	SAME OR DIFFERENT SOLUTIONS? Sudhakar Yalamanchili ¹ , Ravishankar Iyer ² , Stefano Di Carlo ³ ,
	Sudhanva Gurumurthi ⁴ , Arijit Biswas ⁵ and Bodo Hoppe ⁶
	¹ Georgia Tech., US; ² UIUC, US; ³ Politecnico di Torino, IT ⁴ AMD, US; ⁵ Intel, US; ⁶ IBM, DE
1645	CLOSING SESSION

W2

ES4CPS - Engineering Simulations for Cyber-Physical Systems

Konferenz 2 0830 - 1700

Organisers:

Christian Berger, University of Gothenburg, SE Ina Schaefer, TU Braunschweig, DE

Nowadays, simulative approaches are mandatory to analyze, design, evaluate, and to prepare real test-runs during the development of these CPS. They enable risk-less and resource-efficient experiments to validate system functions and product families. For example, complex simulations of sensors and the environment are required during the development and validation of self-driving vehicles to safely test the sensor data fusion and algorithms for situation-adaptive driving decisions. The models, which are utilized in these simulations, are continuously improved and enable in the foreseeable future complex analyses of the simulated system, its behavior, and its context. However, simulation experts to design, realize, and maintain these interconnected simulations as well as the simulation environments are limited factors during the development. Thus, methods, metrics, and tools for the engineering of these complex simulation systems are required to effectively design and evaluate these CPS also in the future.

8		

OPENING SESSION

FROM SARTRE TOWARDS AUTONOMOUS DRIVING - AN EXPERIENCE REPORT AND OUTLOOK

Speaker: Eric Coelingh, Volvo Car Corporation, SE

1000

COFFEE BREAK

SESSION 1

COMBINING FAULT-INJECTION WITH PROPERTY-BASED TESTING

Speakers: Benjamin Vedder¹, Thomas Art², Jonny Vinter¹ and Magnus Jonsson³ ¹ SP Technical Research Institute of Sweden, SE

²Quvig AB, SE

³ Halmstad University, SE

HOME ENERGY SIMULATION FOR NON-INTRUSIVE LOAD MONITORING APPLICATIONS

Speakers: Krishnan Srinivasarengan, Goutam Y G and Girish Chandra Tata Consultancy Services Ltd., IN

PHYSICAL SECURITY EVALUATION AT AN EARLY DESIGN-PHASE: A SIDE-CHANNEL AWARE SIMULATION METHODOLOGY

Speakers: Shivam Bhasin¹, Tarik Graba², Jean-Luc Danger¹, Yves Mathieu¹, Daisuke Fujimoto³ and Makoto Nagata³ ¹Institut TELECOM, TELECOM ParisTech, CNRS LTCI (UMR 5141), FR ²TELECOM Institute / TELECOM ParisTech, FR ³Kobe University, Kobe, JP

*

LUNCH SESSION 2

ARCHON: ARCHITECTURE-OPEN RESOURCE-DRIVEN CROSS-LAYER MODELLING FRAMEWORK

Speakers: Ashur Rafiev, Alexei Iliasov, Alexander Romanovsky, Andrey Mokhov, Fei Xia and Alex Yakovlev Newcastle University, GB

DSL METHODS FOR CPS SIMULATION IN THE CLOUD

Speaker: Peter Kourzanov, Delft University Of Technology, NL

REDUCING SIMULATION TESTING TIME BY PARALLEL EXECUTION OF LOOSELY-COUPLED SEGMENTS OF A TEST SCENARIO

Speakers: Md. Abdullah Al Mamun¹ and Jörgen Hansson ¹Chalmers University of Technology, SE ²Högskolan i Skövde, SE

1430

COFFEE BREAK SESSION 3

SIMULATIONS ON CONSUMER TESTS: A PERSPECTIVE FOR DRIVER ASSISTANCE SYSTEMS

Speakers: Delf Block¹, Sönke Heeren², Stefan Kühnel¹, Andre Leschke¹, Bernhard Rumpe³ and Vladislavs Serenbro² ¹Volkswagen AG, DE ²Automotive Safety Technologies GmbH, DE ³RWTH Aachen University, DE

MODELING AND SIMULATION OF ENERGY-AWARE ADAPTIVE POLICIES FOR AUTOMATIC WEATHER STATIONS

Speakers: Daniel Cesarini, Luca Cassano, Alessio Fagioli and Marco Avvenuti

Dept. of Information Engineering - University of Pisa

1600

FINAL DISCUSSION, CLOSING SESSION AND FINAL REMARKS

Dresden, Germany DATE14

W3

	Speaker: Christian Plessl, University of Paderborn	
1200	LUNCH	E14
1300	SESSION 3 -COMPILERS AND CODE OPTIMIZATION FOR HARDWARE-ACCELERATED PLATFORMS	DATE14
1300	FROM SOFTWARE CODE TO HARDWARE: DIRECTIONS IN HIGH- LEVEL SYNTHESIS Speaker: Philippe Coussy, Université de Bretagne-Sud, Lab-STICC	Dresden, Germany
1330	POLYHEDRAL COMPILATION AND CODE TRANSFORMATIONS FOR HIGH-LEVEL SYNTHESIS Speaker: Louis-Noel Pouchet, University of California Los Angeles	Dresder
1400	SESSION 4 - TOWARDS HIGHER-LEVEL DESIGN APPROACHES	2014
1400	CODESIGN WITH VERITY: BIDIRECTIONAL CONTROL-FLOW ACROSS THE FPGA-CPU DIVIDE Speaker: Eduardo Aguilar Peleaz, Imperial College	24-28 March 2014
1430	BORROWING HIGH-LEVEL PARADIGMS FROM PARALLEL COMPUTING: AN OPENMP-BASED DESIGN FLOW Speaker: Alessandro Cilardo, University of Naples Federico II	Ň
1500	PANEL 2	
1500	ESL FOR HETEROGENEOUS COMPUTING: ENVISAGING TOMORROW'S TOOL FLOWS Panelists: Philippe Coussy, Louis-Noel Pouchet, Eduardo Aguilar Peleaz	
1530	COFFEE BREAK + POSTER SESSION 2	
1600	SESSION 5 - CURRENT AND EMERGING HETEROGENEOUS COMPUTING APPLICATIONS	
1600	HETEROGENEOUS HPC: COMBINING FPGAS, CPUS, AND GPUS FOR FINANCIAL ANALYTICS Speaker: David Thomas, Imperial College	
1630	PANEL 3	
1630	WHAT ROLE FOR DEDICATED HARDWARE ACCELERATION IN TOMORROW'S HIGH-PERFORMANCE AND SCIENTIFIC COMPUTING? Panelists: Alessandro Cilardo, Steve Hebert, Bogdan Pasca	
1645	CLOSING SESSION	

MAPPING APPLICATIONS TO HETEROGENEOUS ACCELERATORS:

TOOL FLOWS AND RUN-TIME SYSTEMS

1130

Electronic System-Level Design towards Heterogeneous Computing Konferenz 3 0830 – 1700

Organisers:

Alessandro Cilardo, University of Naples Federico II, IT David Thomas, Imperial College, GB

Heterogeneous computing has emerged as a new important trend in computer architecture and high-performance computing. It refers to systems combining a variety of different computational units, such as general-purpose processors, special-purpose units, i.e. digital signal processors or the graphics processing units (GPUs), co-processors, custom accelerators, typically implemented on field-programmable gate arrays (FPGAs). The heterogeneous computing paradigm is rapidly extending its range to the development of complex embedded systems, multi-processor systems on chip and, in general, application-specific custom machines. The inclusion of FPGAs as heterogeneous accelerators for HPC platforms, furthermore, is introducing new challenges related to programmability, abstraction and programming paradigms, as well as new opportunities for hardware-accelerated high-performance and scientific computing applications. In fact, there are currently a large number of ongoing research projects and industrial initiatives centered on heterogeneous computing. The workshop will offer a global view of this rich and diverse research scenario. Representing the perspectives of both academia and industry, the talks will particularly address important cross-cutting issues involving system-level and embedded design in the light of the emerging heterogeneous computing trends.

0830	OPENING SESSION
0845	SESSION 1 TRENDS IN HETEROGENEOUS COMPUTING: THE INDUSTRIAL PERSPECTIVE
0845	HETEROGENEOUS COMPUTING IN THE CLOUD: EMERGING TRENDS FROM THE INDUSTRY Speaker: Steve Hebert, Nimbix
0915	HIGHER LEVEL PROGRAMMING ABSTRACTIONS FOR FPGAS USING OPENCL Speaker: Bogdan Pasca, Altera European Technology Centre
0945	PANEL 1
0945	INDUSTRY TRENDS: BRINGING DEDICATED HARDWARE ACCELERATION TO THE MARKET Panelists: Koen Bertels, Steve Hebert, Bogdan Pasca
1030	COFFEE BREAK+POSTER SESSION 1
1100	SESSION 2 - RESEARCH CHALLENGES IN HETEROGENEOUS COMPUTING DESIGN FLOWS
1100	FPGA BASED ACCELERATORS FOR BIG DATA: POLYMORPHIC COMPUTING FOR BIG DATA Speaker: Koen Bertels, Delft University of Technology

DATE14

Dresden, Germany

24-28 March 2014

W4

Workshop on Design Automation for Understanding Hardware Designs

Konferenz 4 0830 - 1700

Technical PCs:

Lyes Benalycherif, ST Microelectronics, FR Valeria Bertacco, University of Michigan, US Raik Brinkmann, OneSpinSolutions GmbH, DE Franco Fummi, Università degli Studi di Verona, IT Masahiro Fujita, University of Tokyo, JP Wenchao Li, University of California, US Tun Li, National University of Defense Technology, CN

Organisers:

Emmanuelle Encrenaz-Tiphene, Université Pierre et Marie Curie, FR Goerschwin Fey, German Aerospace Center, DE

Understanding a hardware design is tough. When entering a large team as a new member, when extending a legacy design, or when documenting a new design, a lack in understanding the details of a design is a major obstacle for productivity. In software engineering topics like software maintenance, software understanding, reverse engineering are well established in the research community and partially tackled by tools. In the hardware area the re-use of IP-blocks, the growing size of designs and design teams leads to similar problems. Understanding of hardware requires deep insight into concurrently operating units, optimizations to reduce the required area, and specially tailored functional units for a particular use. The workshop is of interest to practitioners working in circuit design and to researchers interested in design automation.

The aim of the 1st Workshop on Design Automation for Understanding Hardware Designs (DUHDe) is to establish a community for these topics in electronic design automation.

×	

OPENING SESSION

Chairs: Görschwin Fey, Emmanuelle Encrenaz-Tiphéne

INVITED TALK

MANAGING DESIGN KNOWLEDGE FOR IP CORES – STATE-OF-THE-ART AND OPEN QUESTIONS

Speaker: Alexander Rath, Infineon Technologies AG, Munich, DE

TECHNICAL SESSION: FORMAL AND SEMI-FORMAL AUTOMATIC IDENTIFICATION OF LOGICAL RELATIONSHIPS AMONG INTERNAL SIGNALS WITH SMALL NUMBERS OF TEST VECTORS

Speakers: Masahiro Fujita, Takeshi Matsumoto and Satoshi Jo University of Tokyo, JP

USING NATURAL LANGUAGE DOCUMENTATION IN THE FORMAL VERIFICATION OF HARDWARE DESIGNS

*

Speakers: Christopher Harris and Ian Harris University of California, Irvine, US

UNDERSTANDING COMPOUND SYSTEMS FROM THEIR COMPONENTS' PROPERTIES

Speakers: Syed-Hussein Syed-Alwi and Emmanuelle Encrenaz Université Pierre et Marie Curie Paris 6, FR

DESIGN UNDERSTANDING WITH FAST PROTOTYPING FROM ASSERTIONS

Speakers: Katell Morin-Allory, Fatemeh Javaheri and Dominique Borrione Univ. Grenoble Alpes, Grenoble, FR

1030

DETECTING CONCURRENCY PROBLEMS IN SYSTEM LEVEL DESIGNS

COFFEE BREAK & POSTER PRESENTATIONS

Alper Sen and Onder Kalaci Bogazici University, Istanbul, TR

AUTOMATICALLY CONNECTING HARDWARE BLOCKS VIA LIGHT-WEIGHT MATCHING TECHNIQUES

Jan Malburg¹, Niklas Krafczyk¹ and Goerschwin Fey^{1,2} ¹University of Bremen, Germany ²German Aerospace Center, Bremen, DE

EXACT SOLUTION FOR TRACE SIGNAL SELECTION WITH PSEUDO BOOLEAN OPTIMIZATION (PBO)

Shridhar Choudhary, Kousuke Oshima, Amir Masoud Gharehbaghi, Takeshi Matsumoto and Masahiro Fujita The University of Tokyo, Tokyo, JP

0 INVITED TALK

CAPTURING AND VALIDATING DESIGN UNDERSTANDING USING FORMAL PROPERTIES

Speaker: Raik Brinkmann OneSpinSolutions GmbH, Munich, DE

LUNCH

0 INVITED TALK

DESIGN UNDERSTANDING IN SOC DEVELOPMENT - RECENT ADVANCES AND NEW CHALLENGES

Speaker: Lyes Benalycherif ST Microelectronics, Grenoble, FR

TECHNICAL SESSION: SYSTEM LEVEL PRODUCTIVITY

DIPLODOCUSDF: ANALYZING HARDWARE/SOFTWARE INTERACTIONS WITH A DINOSAUR

Speakers: Andrea Enrici, Ludovic Apvrille and Renaud Pacalet Telecom ParisTech, Biot, FR

TOWARDS A MULTI-DIMENSIONAL AND DYNAMIC VISUALIZATION FOR ESL DESIGNS

Speakers: Jannis Stoppe¹, Marc Michael², Mathias Soeken^{1,2}, Robert Wille^{1,2,3} and Rolf Drechsler^{1,2} ¹DFKI GmbH, Bremen, DE ²University of Bremen, Bremen, DE ³Technical University Dresden, DE

FRIDAY

INVITED TALK

SOFTWARE REVERSE ENGINEERING

Speaker: Rainer Koschke, University of Bremen, DE

COFFEE BREAK & POSTER PRESENTATIONS

TECHNICAL SESSION: REVERSE AND AUTOMATIC ENGINEERING

INCREASING VERILOG'S GENERATIVE POWER

Speakers: Cherif Salama¹ and Walid Taha² ¹Ain Shams University, Cairo, EG ²Halmstad University, Halmstad, SE

ZAMIACAD: UNDERSTAND, DEVELOP AND DEBUG HARDWARE DESIGNS

Speakers: Maksim Jenihhin¹, Valentin Tihhomirov¹, Syed Saif Abrar¹, Jaan Raik¹ and Guenter Bartsch² ¹Tallinn University of Technology, EE ²zamiaCAD, DE

MUTATION BASED FEATURE LOCALIZATION

Speakers: Jan Malburg¹, Emmanuelle Encrenaz-Tiphene² and Goerschwin Fey^{1,3} ¹University of Bremen, DE ²Université Pierre et Marie Curie Paris 6, FR ³German Aerospace Center, Bremen, DE

PANEL

DESIGN UNDERSTANDING – WHERE DO INDUSTRY AND ACDEMIA TEAM UP?

Panelists: Ian Harris, Lyes Benalycherif, Raik Brinkmann

The panel will summarize the results of the day and prioritize topics focusing on three questions:

- What are the most urgent topics from an industrial perspective?
- What are the most challenging topics from an academic perspective?
- Where can we exploit synergies between academia and industry?

*

3D Integration: Applications, Technology, Architecture, Design, Automation, and Test

Konferenz 5 0815 - 1630

Programme Chairs: Pascal Vivet, CEA-LETI, FR Fabian Hopsch, Fraunhofer IIS/EAS, DE

Panel Chair: Rishad Shafik, University of Southampton, GB

Publication Chair: Bjorn B. Larsen, NTNU, NO

Steering Committee Members:

Erik Jan Marinissen, IMEC, BE Q. Xu, Chinese University of Hong Kong, HK

General Chair: Saqib Khursheed, University of Liverpool, GB

3D Integration is a promising technology for extending Moore's momentum in the next decennium, offering heterogeneous technology integration, higher transistor density, faster interconnects, and potentially lower cost and time-to-market. But in order to produce 3D chips, new capabilities are needed: process technology, architectures, design methods and tools, and manufacturing test solutions. The goal of this Workshop is to bring together researchers, practitioners, and others interested in this exciting and rapidly evolving field, in order to update each other on the latest state-of-the-art, exchange ideas, and discuss future challenges.

The last five editions of this workshop took place in conjunction with DATE:

- DATE 2009, Nice, France www.date-conference.com/date09/conference/workshop-W5
- DATE 2010, Dresden, Germany www.date-conference.com/date10/conference/workshop-W5
- DATE 2011, Grenoble, France www.date-conference.com/date11/conference/workshop-W5
- DATE 2012, Dresden, Germany www.date-conference.com/date12/conference/session/W5
- DATE 2013, Grenoble, France www.date-conference.com/date13/conference/workshop-W5

The workshop program contains the following elements:

- One invited keynote.
- One special session on Reliability and Thermal issues in 3D ICs.
- One panel session on Standardisation of 3D CAD tools.
- One invited talk.
- Two technical sessions with 10 regular presentations.
- Two poster sessions.

DATE14

FRIDAY

FRIDAY

0815	SESSION 1: OPENING Chair:Paul Franzon, North Carolina State University, US
0815	WELCOME ADDRESS Speaker: Khursheed Saqib, U of Liverpool, GB
0820	KEYNOTE PRESENTATION: 3D TECHNOLOGY APPLICATIONS MARKET TRENDS & KEY CHALLENGES Speaker: Thibault Buisson, Yole Développement, FR
0900	SPECIAL SESSION: RELIABILITY AND THERMAL ISSUES IN 3D ICS
0900	OVERVIEW OF 3D-RELIABILITY RESEARCH IN IMEC Speaker: Kristof Croes, IMEC, BE
0920	ADVANCED FAILURE ANALYSIS TECHNIQUES FOR 3D PACKAGES Speaker: Frank Altmann, Fraunhofer IWM Halle, DE
0940	RESEARCH DIRECTIONS ON THERMAL IMPACT OF 3D ASSEMBLY Speaker: Haykel Ben Jaama, CEA-LETI, FR
1000	SESSION 2: COFFEE BREAK & POSTERS
1030	SESSION 3: INVITED TALK AND PANEL Chair: Françoise Von Trapp, Queen of 3D, 3DInCites, US
1030	INVITED TALK: HETEROGENEOUS SENSOR INTEGRATION; INCREASED TECHNOLOGY READINESS LEVEL Speaker: Maaike Visser, SINTEF, NO
1100	ARE SLOW STANDARDIZATION AND CAD-TOOL DEVELOPMENT HINDERING THE PROGRESS OF 3D IC DESIGN AND INTEGRATION? Speakers: Brandon Wang ¹ , Ron Press ² , Makoto Nagata ³ and Mustafa Badaroglu ⁴ ¹ Cadence Design Systems, US ² Mentor Graphics, US ³ Kobe University, JP ⁴ Qualcomm Technologies, BE
1200	LUNCH BREAK
1300	SESSION 4: TECHNOLOGY AND DESIGN CHALLENGES FOR 3D ICS
1300	INTEGRATION OF THROUGH-SILICON VIAS IN A HIGH PERFORMANCE BICMOS TECHNOLOGY FOR RF-GROUNDING AND 3D-INTEGRATION Speakers: M. Wietstruck ¹ , M. Kaynak ¹ , S. Marschmeyer ¹ , K. Zoschke ² and B. Tillack ³ ¹ IHP, DE ² Fraunhofer IZM, DE ³ IHP, Technische Universität Berlin, DE
1318	2.5D & 3D TECHNOLOGIES REQUIRE INNOVATIVE
	LITHOGRAPHY SOLUTIONS Speakers: Klaus Ruhmer, Philippe Cochet and Roger McCleary, Rudolph Technologies, US
1336	3D WIREBONDLESS IGBT MODULE FOR HIGH POWER APPLICATIONS Speakers: Z. Y. Gao ¹ , Y. X. Ren ¹ , Y.C. Lee ² and X.Q. Shi ¹ 'Hong Kong Applied Science & Technology Research Institute, HK

²Hong Kong Science & Technology Parks Corporation, HK

*

*

 \mathbf{i}

 $\mathbf{+}$

FRIDAY

DATE14

Dresden, Germany

24-28 March 2014

1354 TOWARDS TRUSTWORTHY NOC-BASED 3D-MPSOCS Speakers: Johanna Sepúlveda¹, Guy Gogniat² and Marius Strum¹ ¹University of São Paulo, BR ²LAB-STICC, Lorient, FR A TSV-PROPERTY-AWARE SYNTHESIS METHOD FOR 1412 APPLICATION SPECIFIC 3D-NOCS Speakers: Felix Miller, Thomas Wild, Andreas Herkersdorf, Vladimir Todorov, Daniel Mueller-Gritschneder and Ulf Schlichtmann Technische Universität, München, DE **SESSION 5: COFFEE BREAK & POSTERS** SESSION 6: TEST AND THERMAL CHALLENGES FOR 3D ICS Chair: Basel Halak, U. of Southampton, GB DESIGN, TEST GENERATION, PROCESSING, AND PRE- AND 1500 POST-BOND MEASUREMENT RESULTS OF A 3D-DFT DEMONSTRATOR CHIP STACK Speakers: Erik Jan Marinissen¹, Bart De Wachter¹, Stephen O'Loughlin¹, Sergej Deutsch², Christos Papameletis² and Tobias Burgherr³ ¹IMEC, BE ²Cadence Design Systems, DE ³Cadence Design Systems, US POWER AND DFT AWARE PARTITIONING FOR 3D-SOCS 1518 Speakers: Amit Kumar and Sudhakar M. Reddy University of Iowa, US SYSTEM LEVEL THERMAL MODELLING FOR 3D IC: A MEMORY-1536 ON-LOGIC 3D TEST CASE STUDY Speakers: Cristiano Santos¹, Pascal Vivet², Denis Dutoit², Philippe Garrault³, Nicolas Peltier³ and Ricardo Reis⁴ ¹CEA-LETI, UFRGS, FR ²CEA-LETI, FR ³DOCEA-Power, FR 4UFRGS, BR 1554 THERMAL POWER PLANE ENABLING DUAL-SIDE ELECTRICAL INTERCONNECTS SUPPORTING HIGH-PERFORMANCE CHIP STACKING Speakers: Thomas Brunschwiler¹, Stefano Oggioni², Timo Tick¹, Gerd Schlottig¹ and Hubert Harrer³ ¹IBM Research, Zurich, CH ²IBM ISC, Milan, IT ³Böblingen, DE THERMAL COUPLING IN TSV-BASED 3-D INTEGRATED CIRCUITS 1612 Speakers: Ioannis Savidis1 and Eby G. Friedman2 ¹Drexel University, US ²University of Rochester, US

W6

24-28 March 2014

MEDIAN - Workshop on Manufacturable and Dependable Multicore Architectures at Nanoscale

Konferenz 6 0830 – 1630

General Co-Chairs: Mehdi Tahoori, Karlsruhe Institute of Technology, DE Oliver Bringmann, FZI/University of Tuebingen, DE

Program Co-Chairs:

Maria K. Michael, University of Cyprus, CY Ozcan Ozturk, Bilkent University, TR

Panel Session Chair: Said Hamidioui, Delft University of Technology, NL

Submissions Chair: Michael Skitsas, University of Cyprus, CY

Constant advances in manufacturing yield and field reliability are important enabling factors for electronic devices pervading our lives, from medical to consumer electronics, from railways to the automotive and avionics scenarios. At the same time, both technology and architectures are today at a turning point; many ideas are being proposed to postpone the end of Moore's law such as extending CMOS technology as well as finding alternatives to it like CNTFET, QCA, memristors, etc., while at the architectural level, the spin towards higher frequencies and aggressive dynamic instruction scheduling has been replaced by the trend of including many simpler cores on a single die. These paradigm shifts imply new dependability issues and thus require a rethinking of design, manufacturing, testing, and validation of reliable next-generation systems. These manufacturability and dependability issues will be resolved efficiently only if a crosslayer approach that takes into account technology, circuit and architectural aspects will be developed.

This workshop will provide an open forum for presentations in the above-mentioned fields. The topics include (but are not limited to) the following ones:

- Methodologies/techniques for manufacturing reliable nanoscale devices
- System level design, on-line testing/fault tolerance
- Dependability Evaluation and Validation/Debug Methodologies
- Fault tolerance for space applications
- Fault tolerance for transportation systems
- Fault tolerance for medical devices

0830

OPENING SESSION

General Chairs: Oliver Bringmann, FZI/University of Tuebingen, DE, Mehdi Tahoori, Karlsruhe Institute of Technology, DE Programme Chairs: Maria K Michael, University of Cyprus, CY, Ozcan Ozturk, Bilkent University, TR

WELCOMING COMMENTS

KEYNOTE TALK

DESIGNING EFFICIENT AND RELIABLE MULTICORE PROCESSORS FOR NETWORKING, SERVERS, AND BEYOND

*

Speaker: Shubu Mukherjee, Cavium Networks, US

PAPER SESSION I: NEW CHALLENGES AT THE SYSTEM LEVEL

MULTI-CORE EMULATION FOR DEPENDABLE AND ADAPTIVE SYSTEMS PROTOTYPING

Speakers: Cristiana Bolchini and Matteo Carminati Politecnico di Milano, IT

FAULT-TOLERANT ROUTING APPROACH FOR 3D STACKED MESHES

Speakers: Masoumeh Ebrahimi, Masoud Daneshtalab and Juha Plosila

University of Turku, FI

COFFEE BREAK

PAPER SESSION II: RELIABILITY THREADS IN NEW TECHNOLOGIES

INVITED TALK - STEEP SLOPE DEVICES: OPPORTUNITIES AND CHALLENGES FOR PROCESSOR DESIGN

Speaker: Vijaykrishnan Narayanan, Penn State, US

BTI RELIABILITY FROM PLANAR TO FINFET NODES: WILL THE NEXT NODE BE MORE OR LESS RELIABLE?

Speakers: Halil Kukner¹, Pieter Weckx², Praveen Raghavan¹, Ben Kaczer¹, Doyoung Jang¹, Francky Catthoor³, Liesbet Van der Perre², Rudy Lauwereins³ and Guido Groeseneken³ ¹IMEC, BE ²KU Leuven, BE ³IMEC, KU Leuven, BE

ANALYSIS OF RANDOM DOPANT FLUCTUATIONS AND OXIDE THICKNESS ON A 16NM L1 CACHE DESIGN*

Speakers: Cargi Erylmaz^{1,2}, Azam Seyedi^{2,3}, Ozman Unsal², Andrian Cristal^{2,3,4} ¹Middle Eastern Technical University, TR ²Barcelona Supercomputing Center, ES ³Universitat Politecnica de Catalunya, ES ⁴IIIA-CSIC, ES

LUNCH BREAK

130

PAPER SESSION III: APPLICATION SPECIFIC SOLUTIONS

FPGA DEFECT TOLERANCE BASED ON EQUIVALENT CONFIGURATIONS GENERATION

Speakers: Parthasarathy M. B. Rao, Abdulazim Amouri and Mehdi B. Tahoori Kadaguba Institute of Tachaologu, DE

Karlsruhe Institute of Technology, DE

A COMPLEX CONTROL SYSTEM FOR TESTING FAULT-TOLERANCE METHODOLOGIES*

Speakers: Jakub Podivinsky, Marcela Simkova and Zdenek Kotasek Brno University of Technology, CZ

1330

*

PANEL SESSION

Organiser: Said Hamdioui, TU Delft, NL Chair: Matteo Sonza Reorda, Politecnico di Torino, IT

DATE14 Dresden, Germany

HARDWARE V SOFTWARE ENGINEERING: WHOSE **RESPONSIBILITY IS THE REALIZATION OF FUTURE RELIABLE COMPUTER SYSTEMS?**

Speakers: Mehdi Tahoori¹, Oliver Bringmann², Adrian Evans³ and Viacheslav Izosimov⁴ ¹Karlsruhe Institute of Technology, DE ²FZI/University of Tuebingen, DE ³Adrian Evans, iROC, FR ⁴Viacheslav Izosimov, Semcon, SE

COFFEE BREAK & POSTER SESSION

BADR: BOOSTING RELIABILITY THROUGH DYNAMIC REDUNDANCY

Speakers: Ihsen Alouani¹, Smail Niar¹, Mazen Saghir² and Fadi Kurdahi³ ¹University of Valenciennes, FR ²Texas A&M University, US ³University of California Irvine, US

AUTOMATIC DETECTION AND CORRECTION OF DEFECTIVE PIXELS FOR MEDICAL AND SPACE IMAGERS

Speakers: Eliahu Cohen¹, Moriel Shnitser², Tsvika Avraham², Ofer Hadar², Yocheved Dotan³ ¹Tel-Aviv University, IL ²Ben-Gurion University, IL ³Ruppin Academic Center, IL

IMPLEMENTING DOUBLE ERROR CORRECTION ORTHOGONAL LATIN SQUARES CODES IN XILINX FPGAS

Speakers: Mustafa Demirci¹, Pedro Reviriego² and Juan Antonio Maestro² ¹Alesan, TR ²Universidad Antonio de Nebrija, ES

ON RELIABILITY ENHANCEMENT USING ADAPTIVE CORE **VOLTAGE SCALING AND VARIATIONS ON TSMC 28NM LP** PROCESS PROCESS FPGAS

Speakers: Petr Pfeifer and Zdenek Pliva Technical University of Liberec, CZ

POWER AND PERFORMANCE OPTIMIZATION IN LONG-TERM **OPERATION**

Speakers: André Romão¹, Jorge Semião¹, Carlos Leong², Marcelino Santos³, Isabel Teixeira³ and Paulo Teixeira³ ¹University of Algarve, PT ²INESC-ID, PT ³Technical University of Lisbon, PT

PAPER SESSION IV: RESILIENCY, SELF-TEST AND SELF-DIAGNOSIS

INVITED TALK - DEEP-ER: SCALABLE RESILIENCY IN EXASCALE COMPUTING

*

Speaker: Michael Kauschke, Intel, DE

IMPROVING THE RELIABILITY OF SKEWED CACHES THROUGH ECC BASED HASHES

Speakers: Sercan Yegin¹, Burak Karsli¹, Oguz Ergin¹, Marco Ottavi², Salvatore Pontarelli² and Pedro Reviriego³ ¹TOBB University, TR ²University of Rome Tor Vergata, IT ³Universidad Antonio de Nebrija, ES

A NEW DIAGNOSTIC METHOD FOR VLIW PROCESSORS*

Speakers: Davide Sabena, Luca Sterpone and Matteo Sonza Reorda

Politecnico di Torino, IT

AGING MONITORING METHODOLOGY FOR BUILT-IN SELF-TEST **APPLICATIONS***

Speakers: João Coelho¹, Jorge Semião¹, Carlos Leong², Marcelino Santos³, Isabel Teixeira³ and Paulo Teixeira³ ¹University of Algarve, PT ²INESC-ID, PT ³Technical University of Lisbon, PT

CLOSING SESSION

* indicates short paper

W7

Memristor Science & Technology

Seminar 5+6 0830 - 1700

Organisers:

Ronald Tetzlaff, Technische Universität Dresden, DE Fernando Corinto, Politecnico di Torino, IT

Programme Chairs: Alon Ascoli, Technische Universität Dresden, DE Sandro Carrara, EPFL, CH

Conventional computing, including both hardware platforms and computer languages, seems to be close to its physical limits in terms of speed and data density. Classical Von Neumann architectures are known to be great in number crunching; nevertheless, they struggle with tasks like face recognition, real-time navigation control, object segmentation and depth perception. On top of that, CMOS technologies are also approaching the nano-scale floor, with devices attaining comparable dimensions to their constituting atoms, imposing significant challenges on the performance and reliability of analogue and digital circuits hindering the well-exploited correlation of Moore's law with computation capacity.

Memristors were first conjectured based on the missing constitutive link between flux and charge by Leon Chua as published in his seminal paper in 1971, which was further extended by L. O. Chua and S. M. Kang in their 1976 paper on memristive devices and systems. Recently, a physical realization of memristors was reported in Nature by HP's Stan Williams team in 2008. To date, memristor represents the latest technology breakthrough to build electronics devices with characteristics that show an intriguing resemblance to the brain's synapses.

The One-day Workshop on "Memristor Science & Technology" is organized in plenary talks, Positions papers and sessions with selected and invited contributions.

The One-day Workshop on "Memristor Science & Technology" will be a multidisciplinary forum for researches and industrial companies to present the latest advances in the field of memristor circuits and their latest breakthrough applications.

OPENING SESSION

Chair: Fernando Corinto, Politecnico di Torino, IT Co-Chair: Ronald Tetzlaff, Technische Universität Dresden, DE

*

120

INVITED TALK BY PROF. L. O. CHUA

MEMRISTOR: STATE-OF-THE-ART Speaker:L. O. Chua

INVITED TALK BY DR. S. WILLIAMS

COFFEE BREAK

- INVITED TALK BY DR. THOMAS MIKOLAJICK

RESISTIVE SWITCHING - FROM BASIC SWITCHING MECHANISM TO DEVICE APPLICATIONS

Speakers: T. Mikolajick, H. Mähne, H. Wylezich and S. Slesazeck

LUNCH

SESSION 1

THE ART OF SPICE MODELING OF MEMRISTIVE SYSTEMS Speaker: Dalibor Biolek

MODELING AND SIMULATION OF MEMRISTIVE DEVICES FOR MEMORY AND LOGIC APPLICATIONS

Speakers: Stephan Menzel and Rainer Waser

MEMORY INTENSIVE COMPUTING Speaker: Shahar Kvatinski Technion – Israel Institute of Technology, IL

SESSION 2

MULTI-FUNCTIONAL SPINTRONIC AND FERROELECTRIC NANODEVICES FOR NEUROMORPHIC COMPUTING Speaker: Julie Grollier

IS MEMRISTOR THE 4TH CIRCUIT ELEMENT?

Speaker: Frank Zhigang Wang

A GENERAL MODEL OF MEMRISTORS BASED ON CHUA'S UNFOLDING CONCEPT FOR TIME-EFFICIENT CIRCUIT SIMULATIONS

Speakers: Ronald Tetzlaff and Alon Ascoli

PATTERN CLASSIFICATION AND RECOGNITION WITH MEMRISTIVE CIRCUITS

Speakers: F. Alibart and D. B. Strukov

MEMRISTOR CROSSBAR ARRAY CIRCUITS FOR NEUROMORPHIC APPLICATIONS Speaker: Kyeong-Sik Min

1640

CLOSING SESSION

W8

3PMCES - Performance, Power and Predictability of Many-Core Embedded Systems

Seminar 3+4 0830 - 1700

Organizing Committee Members:

Tapani Ahonen, Technoconsult (TC) and Tampere University of Technology (TUT), FI Mats Brorsson, KTH and Swedish Institute of Computer Science (SICS), SE Sven Karlsson, DTU, DK Adam Morawiec, ECSI, FR Walter Stechele, Technical University of Munich (TUM), DE

The scope of the workshop is to address challenges of embedded portable software development on multi-core structures related to various performance aspects, power efficiency, correctness and reliability including aging.

The workshop will present the current state of these efforts, achieved results so far, and will devise future ways of potential further enhancements. It will address key challenges in the provision of integrated solutions, including secure, reliable, and timely operations, back-annotation based forward system governance, tool-tool, tool-middleware, and middleware-hardware exchange interfaces, and energy management with minimal run-time overhead.

Besides conceptual solutions, it will give an overview of practical infield experiments on real industry projects provided for "seamless connectivity and middleware" by realizing a common middleware layer that is designed to support new wireless communication standards, while being portable across different platforms. It will also demonstrate some of the developed tools and preliminary results achieved in three European projects: CRAFTERS (www.crafters-project.org), PaPP (www.papp-project.eu) and RELY (www.rely-project. eu). We will discuss the experiences from working with the tools on industrial applications.

0830 OPENING SESSION

KEYNOTE PRESENTATION

TRUSTWORTHY CONTRACT COMPUTING THROUGH SEAMLESS SYSTEM BUILD AND OPERATION

Tapani Ahonen, Tampere University of Technology, FI

930 SESSION 1

PREDICTABLE PORTABILITY OF PARALLEL CODE BASED ON INCREASED SEMANTIC INFORMATION SHARING AND FORK-JOIN PROGRAMMING

Konstantin Popov, SICS Swedish ICT AB, SE

SESSION 2: MANAGING EXECUTION IN DYNAMIC ENVIRONMENT

EFFICIENT LEADER ELECTION FOR SYNCHRONOUS SHARED-MEMORY SYSTEMS

Speakers: Vicent Sanz Marco¹, Raimund Kirner¹, Michael Zolda¹, Guoqing Zhang², Tapani Ahonen², Nilesh Karavadara³, Simon Folie³, Michael Zolda³, Nga Nguyen³ and Raimund Kirner³ ¹University of Hertfordshire, UK ²Tampere University of Technology, FI ³University of Hertfordshire, UK

*

A PROPOSAL ON PARALLEL SOFTWARE DEVELOPMENT FOR NETWORK-ON-CHIP BASED MANY-CORE SYSTEM (short paper)

Speakers: Guoqing Zhang and Tapani Ahonen

A POWER-AWARE FRAMEWORK FOR EXECUTING STREAMING PROGRAMS ON NETWORKS-ON-CHIP (short paper)

Speakers: Nilesh Karavadara, Simon Folie, Michael Zolda, Nga Nguyen and Raimund Kirner

COFFEE BREAK & POSTER SESSION

INVITED TALK

PERFORMANCE PREDICTION AND SOFTWARE DEVELOPMENT ON MANY-CORE PROCESSOR PLATFORM Speaker: Benoit Dupont de Dinechin, Kalray, FR

LUNCH AND POSTER SESSION

SESSION 3: RELIABILITY AND SAFETY OF MULTI-CORE PLATFORMS

HARDWARE/SOFTWARE-BASED RUNTIME CONTROL OF MULTICORE PROCESSORS-ON-CHIP FOR RELIABILITY MANAGEMENT UNDER AGING CONSTRAINTS

Speakers: Walter Stechele and Erol Koser, Technical University Munich, DE

MPSOC PERFORMANCE DEGRADATION (DUE TO AGING) PREDICTABILITY AT HIGH ABSTRACTION LEVEL AND APPLICATIONS

Speaker: Olivier Heron, CEA-LIST, FR

1400

SESSION 4: EUROPEAN PROJECTS CLUSTER

EUROPEAN PROJECT CLUSTER ON MIXED-CRITICALITY SYSTEMS

Speakers: Salvador Trujillo (IK4-IKERLAN, ES), Roman Obermaisser (University of Siegen, DE), Kim Gruettner (OFFIS – Institute for Information Technology, DE), Francisco J. Cazorla (Barcelona Supercomputing Center and IIIA-CSIC, ES), and Jon Perez (IK4-IKERLAN, ES)

COFFEE BREAK & POSTER SESSION

1500

SESSION 5: SYSTEM DESIGN TECHNOLOGIES

TIMING ANALYSIS OF A HETEROGENEOUS ARCHITECTURE WITH MASSIVELY PARALLEL PROCESSOR ARRAYS

Speakers: Deepak Gangadharan, Alexandru Tanase, Frank Hannig, and Jürgen Teich, University of Erlangen, Nuremberg, DE

AN ACCURATE POWER ESTIMATION METHOD FOR MPSOC BASED ON SYSTEMC VIRTUAL PROTOTYPING

Speaker: Khouloud Zine Elabidine

PARALLELIZATION OF OBJECT DETECTION ALGORITHM THROUGH HARDWARE THREADS FOR MPSOCS

Speakers: David Watson, Ali Ahmadinia, Gordon Morison, and Tom Buggy, Glasgow Caledonian University, UK

PANEL SESSION

Chair: Achim Rettberg, OFFIS, DE

WHAT IS STILL NEEDED TO HAVE A RELIABLE EMBEDDED SYSTEM DEVELOPMENT ECOSYSTEM IN PLACE?

Speakers: Sven Karlsson¹, Tapani Ahonen², Kim Grüttner³, Benoit Dupont de Dinechin⁴ and Walter Stechele⁵ ¹DTU, DK ²TUT, FI ³OFFIS, DE ⁴Kalray, FR ⁵TU Munich. DE

CLOSING SESSION

POSTER PRESENTATIONS

ADAPTIVE RESOURCE CONTROL IN MULTI-CORE SYSTEMS

Alexei Iliasov, Ashur Rafiev, Alexander Romanovsky, Andrey Mokhov, Alex Yakovlev, and Fei Xia, Newcastle University, UK

CRITICALITY-AWARE FUNCTIONALITY ALLOCATION FOR DISTRIBUTED MULTICORE REAL-TIME SYSTEMS

Junhe Gan, Paul Pop, and Jan Madsen, Technical University of Denmark, DK

ESTIMATING VIDEO DECODING ENERGIES AND PROCESSING TIMES UTILIZING VIRTUAL HARDWARE

Sebastian Berschneider, Christian Herglotz, Marc Reichenbach, Dietmar Fey, and André Kaup, Friedrich-Alexander-University Erlangen-Nuremberg, DE

INCREASED RELIABILITY OF MANY-CORE PLATFORMS THROUGH THERMAL FEEDBACK CONTROL

Matthias Becker, Kristian Sandström, Moris Behnam, and Thomas Nolte, MRTC / Mälardalen University, SE

PERFORMANCE ANALYSIS OF A COMPUTER VISION APPLICATION WITH THE STHORM OPENCL SDK

Vítor Schwambach, Sébastien Cleyet-Merle, Alain Issard, STMicroelectronics, FR and Stéphane Mancini, TIMA lab, FR

PSE - PERFORMANCE SIMULATION ENVIRONMENT

Jussi Hanhirova and Vesa Hirvisalo, Aalto University, FI

SCALING PERFORMANCE OF FFT COMPUTATION ON AN INDUSTRIAL INTEGRATED GPU CO-PROCESSOR: EXPERIMENTS WITH ALGORITHM ADAPTATION.

Mohamed Amine Bergach and Serge Tissot, Kontron, FR, Michel Syska and Robert De Simone, Inria, FR

SMART SCHEDULING OF STREAMING APPLICATIONS VIA TIMED AUTOMATA

Waheed Ahmad, Robert de Groote, Philip K.F. Hölzenspies, Mariëlle Stoelinga, and Jaco van de Pol, University of Twente, NL

*

*

SYSTEM LEVEL DESIGN FRAMEWORK FOR MANY-CORE ARCHITECTURES

Pablo Peñil, Luis Diaz, and Pablo Sanchez, University of Cantabria, ES

NOTES

DATE14

vendor exhibition

DATE 14 Exhibition:

Company E	Booth	Company
3D InCites, LLC	K 2	Incentia
ALMA - ALgorithm parallelizatio Multicore Architectures	n for EP 6	Methodic
Blue Pearl Software	24	Micronew Développe
Center for Advancing Electronic Dresden (cfaed)	s 4+5	MOSIS
City of Dresden, Office of Econor Development	mic 13	MultiPAR
CLERECO – Cross-Layer Early		MunEDA 0
Reliability Evaluation for the Computing cOntinuum	EP 4	now publi
CMP: Circuits Multi-Projects	17	OneSpin S
Codasip	7	ProPlus D
Concept Engineering GmbH	11	PROXIMA
CONTREX	EP 1	RacyICs G
CREATIVE CHIPS GmbH	19	SFB HAEC
Dream Chip Technologies GmbH	TP 2	SGS INSTI
DREAMS	EP 1	Silicon Sa
EDA Confidential	K 3	SPRINGER
EDA Solutions LTD	20	
Elektronik i Norden	K 4	Synflow
Elsevier BV	10	Tanner ED
Embedded Computing Specialists	2	TOSHIBA
European Project Cluster on Mix Criticality Systems (DREAMS, PR		University
MA, CONTREX, MultiPARTES)	EP 1	WIBRATE
EUROPRACTICE	1	Vibration Complex I
EuroTraining – Training in Nano tronics	elec- EP 2	Wirtschaf
FlexTiles Consortium	EP 5	(WFS)
Fraunhofer EMFT	TP 3	X-FAB Gro
Fraunhofer Institute for Integra Circuits IIS	ited 12	Zentrum I Dresden A

Company	Booth
Incentia	20
Methodics	15
Micronews Media, powered by	Yole
Développement	K 1
MOSIS	20
MultiPARTES	EP 1
MunEDA GmbH	14
now publishers inc.	27
OneSpin Solutions GmbH	26
ProPlus Design Solutions, Inc.	g
PROXIMA	EP 1
RacyICs GmbH	TP 1
SFB HAEC (TU Dresden)	6
SGS INSTITUT FRESENIUS Gmb	H 13
Silicon Saxony e.V.	13
SPRINGER	22+23
Synflow	8
Tanner EDA	20
TOSHIBA	16
University Booth	3
WIBRATE – Wireless, Self-Powe	ered
Vibration Monitoring and Cont	rol for
Complex Industrial Systems	EP 3
Wirtschaftsförderung Sachsen	GmbH
(WFS)	13
X-FAB Group	13
Zentrum Mikroelektronik	
Dresden AG 13	& TP 4

fringe technical meetings

A number of specialist interest groups will be holding their meetings at DATE 2014. The following meetings are scheduled at the moment. A complete list of fringe meetings can also be found on the DATE homepage **www.date-conference.com**

Day+Time	Meeting & Contact	Room
Mon 1900-2100	ACM SIGDA/EDAA PhD Forum Peter Marwedel, EDAA/ACM SIGDA, DE <peter.marwedel@tu-dortmund.de></peter.marwedel@tu-dortmund.de>	Saal 1
Tue 1300-1430	eTTTC Meeting (European Group of the IEEE Test Technology Technical Council Meeting) Giorgio Di Natale, LIRMM, FR <giorgio.dinatale@lirmm.fr></giorgio.dinatale@lirmm.fr>	Seminar 3
Tue 1830-1930	EDAA General Assembly Georges Gielen, Katholieke Universiteit Leuven, BE <georges.gielen@kuleuven.be></georges.gielen@kuleuven.be>	Seminar 2
Tue 1830-2000	IFIP Working Group 10.5 Dominique Borrione, IMAG, FR <dominique.borrione@imag.fr></dominique.borrione@imag.fr>	Seminar 4
Tue 1830-2030	IFIP Working Group 10.2 Achim Rettberg, University of Oldenburg, DE <achim.rettberg@iess.org></achim.rettberg@iess.org>	Seminar 5
Thu 1230-1400	DATE Sister-Events Meeting Georges Gielen, Katholieke Universiteit Leuven, BE <georges.gielen@kuleuven.be></georges.gielen@kuleuven.be>	Seminar 5

ACM SIGDA/EDAA PhD Forum

Monday, March 24, 2014, 1900-2100, Saal 1

Organiser: Peter Marwedel, EDAA/ACM SIGDA, DE

The ACM SIGDA/EDAA PhD Forum at the Design, Automation and Test in Europe (DATE) Conference is a poster session and a buffet dinner organised and hosted by ACM SIGDA and the European Design and Automation Association (EDAA).

The purpose of the PhD Forum is to offer a forum for PhD students to discuss their thesis and research work with people of the design automation and system design community. It represents a good opportunity for students to get exposure on the job market and to receive valuable feedback on their work.

More information is available on the web www.date-conference.com

university booth demonstrations

DATE 2014 will feature the University Booth within the **exhibition area at booth 3** where system and VLSI CAD tools developed in universities and research institutes are demonstrated as well as circuits in their working environment. This provides an alternative and more direct way of communicating CAD research results and displaying working silicon to the interested specialists. A rotating schedule will operate throughout the three days. Access to the exhibition area is free of charge. Please find detailed information and the online programme at the DATE website

www.date-conference.com/group/exhibition/u-booth.

Contacts: Jens Lienig and Andreas Vörg university-booth@date-conference.com

* exhibition programme

Organiser: Juergen Haase, edacentrum, DE

In addition to the conference programme during DATE 14, there will be a presentation theatre from Tuesday 25 March, to Thursday 27 March, 2014. Attendees will profit from having an industry forum in the midst of Europe's leading electronic systems design event. The theatre is located in the exhibition area on the Terrace Level and affords easy access for exhibition visitors as well as for conference delegates.

Like in previous years, seven Special Sessions from the conference programme (track 8, full details are contained in the main conference programme pages, see p. 12) will take place in the Exhibition Theatre. These sessions are open to conference delegates as well as to exhibition visitors and are as follows:

exhibition theatre

2.8	SPECIAL SESSION - Hot Topic Technology Trans- fer towards Horizon 2020	Tuesday 1130 - 1300
3.8	SPECIAL SESSION - Hot Topic Mission Profile Aware Design – The Solution for Successful De- sign of Tomorrows Automotive Electronics	Tuesday 1430 - 1600
4.8	EXHIBITION SESSION State-of-the-art in Verifi- cation: European Tertulia IC Design - Enabling AMS Structured Verification / Verification in FPGA & IP design flows	Tuesday 1700 - 1830
5.8	SPECIAL SESSION - System Integration - The Bridge between More than Moore and More Moore	Wednesday 0830 - 1000
6.8	EXHIBITION SESSION - First Time Right in Analog Design Enabling New Business Cases	Wednesday 1100 - 1230
7.8	EXHIBITION SESSION - FD-SOI - the Enabling Eu- ropean Technology for Energy Efficient Solutions - Creating a Solution Hive & Design Hub as Eco- System for Future Success	Wednesday 1430 - 1600
8.8	SPECIAL SESSION - Hot Topic Beyond CMOS Ul- tra-low-power Computing	Wednesday 1700 - 1830
9.8	SPECIAL SESSION - Embedded Tutorial Memcom- puting the Cape of Good Hope	Thursday 0830 - 1000
10.8	EXHIBITION PANEL - EDA+3D+MEMS Innovation Agenda 2020 Fueling the Innovation Chain of Electronics	Thursday 1100 - 1230
11.8	SPECIAL SESSION - Embedded Tutorial GPGPUs how to combine high computational power with high reliability	Thursday 1400 - 1530
12.8	SPECIAL SESSION - Panel Future SoC verification methodology UVM evolution or revolution?	Thursday 1600 - 1730

There will be an Exhibition Theatre Panel on the innovation chain: 3D and MEMS technologies – EDA - applications.

In three special Exhibition Theatre Sessions DATE 14 Exhibitors will highlight three parts of the value chain: a new European technology, verification as major design task and new business cases. They will discuss leading-edge approaches for verification of analog/mixed signal, FPGA and IP designs, how to enable new

business cases for analog designs and how the European technology FD-SOI enables energy efficient solutions.

Please see presented overleaf information on the Exhibition Theatre Panel and on the Exhibition Theatre Sessions. The full programme with all the details of the exhibition sessions is available on the DATE web portal.

Exhibition Sessions

4.8 Exhibition Session Tuesday, March 25, 1700 - 1830 State-of-the-art in Verification: European Tertulia IC Design - Enabling AMS Structured Verification/ Verification in FPGA & IP design flows

Details to be announced.

6.8

Exhibition Session Wednesday, March 26, 1100 - 1230 First Time Right in Analog Design Enabling New Business Cases

Details to be announced.

7.8 Exhibition Session Wednesday, March 26, 1430 - 160 FD-SOI - the Enabling European Technology for Energy Efficient Solutions - Creating a Solution Hive & Design Hub as Eco-System for Future Success

Details to be announced.

10.8 Exhibition Panel Thursday, March 27, 1100 - 1230 EDA+3D+MEMS Innovation Agenda 2020 Fueling the Innovation Chain of Electronics

Organiser: Moderator:	Juergen Haase, edacentrum, DE Ahmed Jerraya, CEA-LETI, FR
Panellists:	Brent Gregory, Synopsys, US
rdifettists:	
	Gabriel Kittler, X-FAB, DE
	Horst Symanzik, Bosch-Sensortec GmbH, DE
	Gerd Teepe, GLOBALFOUNDRIES, DE
	Brandon Wang, Cadence, US

Today the most powerful innovations in the major industries and the most promising approaches to tackle burning societal challenges are substantially influenced by and depending from the innovations provided by the microelectronics industry. Breakthroughs in manufacturing technologies enable the realization of novel types of devices and of systems, which enable applications with fascinating functionality and enormous performance. However, this innovation chain is not operational without appropriate innovations in design technology: We need an innovation Agenda 2020 for design methodology and EDA tools fueling the innovation chain of electronics.

2014 the technologies for MEMS and for 3D chips have reached a maturity level that enables them to reshape our lives until 2020. This panel will discuss how to utilize these technologies: Which applications will become possible with the upcoming innovations in 3D and MEMS technologies, what kind of EDA innovations will be required in order to be able to implement these applications effectively and efficiently, yielding powerful yet reliable components and systems.

The set-up of the panel includes the manufacturers GLOBALFOUNDRIES and X-FAB, Bosch as leading supplier of technology and one of the MEMS pioneers as well as leading EDA vendors Cadence and Synopsys.

date executive committee

General Chair Gerhard Fettweis TU Dresden, DE

Vice General Chair Wolfgang Nebel OFFIS, DE

Vice Programme Chair David Atienza EPFL, CH

Design, Methods and Tools Chair Luca Fanucci University of Pisa, IT

Test Chair Cecilia Metra University of Bologna, IT

Executive Track Chair Yervant Zorian Synopsys, US

Special Sessions Co-Chair Wolfgang Mueller Universität Paderborn, DE

Special Day Co-Chair Advancing Electronics beyond CMOS" Ian O'Connor Lyon Institute of Nanotechnology, FR

Special Day Co-Chair "System-Level Design" Jürgen Teich University of Erlangen-Nuremberg, DE

Tutorials Chair

Franco Fummi

Universita' di Verona, IT

Awards Chair Giovanni De Micheli

Publicity Chair Robert Weichert

Exhibition Theatre Chair

Jürgen Haase edacentrum GmbH, DE

Finance Chair Donatella Sciuto

Embedded Software Chair Lothar Thiele FTH Zurich, CH

Special Sessions Co-Chair Omar Hammami ENSTA Paris Tech, FR

Interactive Presentations Chair Oliver Bringmann FZI / University of Tuebingen, DE

Special Day Co-Chair "Advancing Electronics beyond CMOS" Thomas Mikolajick Namlab (cfAED), DE

Special Day Co-Chair "System-Level Design" Johannes Stahl Synopsys, US

Local Arrangements and **ICT Chair** Esther Perez Adeva TU Dresden, DE

Friday Workshops Co-Chair Lorena Anghel TIMA FR

Exhibition Chair Andreas Bruening ZMD AG, DE

-

Press Chair Fred Santamaria DATE, FR

Web Chair

Tobias Seifert

Daniela Dimitrova

European Projects Co-Chair

University Booth Co-Chair

ASPDAC representative at

Katholieke Universiteit Leuven, BE

TU Dresden, DE

ALaRI - USI, CH

Audit Chair

DATE, DE

DATE

Volker Düppe

Andreas Vörg

Tohru Ishihara

EDAA Liaison

Georges Gielen

Event Secretariat

K.I.T. Group GmbH, DE

Eva Schubert

Kyoto University, JP

edacentrum GmbH, DE

Proceedings Chair Marian Verhelst KULeuven - ESAT - MICAS, BE

University Booth Co-Chair

Representative DATE/DAC Norbert Wehn TU Kaiserslautern, DE

DATE representative at Wolfgang Nebel OFFIS, DE

EDAC Liaison Robert Gardner EDA Consortium, US

Event Secretariat Franziska Kremling K.I.T. Group GmbH, DE

PhD Forum Peter Marwedel TU Dortmund, Informatik 12, DE

Eureopan Design Automation Association (EDAA) **Georges Gielen** Katholieke Universiteit Leuven, BE

ECSI Wolfgang Rosenstiel University of Tübingen, DE

Russian Academy of Siences (RAS) Alexander Stempkovsky IPPM RAS, RU

ACM SIGDA Joera Henkel Karlsruhe Institute of Technology, DE

DATE14

Dresden, Germany

24-28 March 2014

technical-programme topic chairs

D1 System Specifications, Models, and Methodologies

Chair: Christian Haubelt, University of Rostock, DE

Co-Chair: Andy Pimentel, University of Amsterdam, NL

D2 System Design, Synthesis and Optimization

Chair: Luciano Lavagno, Politecnico di Torino, IT Co-Chair: Frédéric Pétrot, TIMA Laboratory, FR

D3 Simulation and Validation

Chair: Mark Zwolinski, University of Southampton, GB Co-Chair: Prabhat Mishra, University of Florida, US

D4 Design for power, variability and aging

Chair: Domenik Helms, OFFIS, DE Co-Chair: Marisa Lopez-Vallejo, UPM, ES

D5 Power Estimation and Optimization

Chair: Jian-Jia Chen, KIT, DE Co-Chair: William Fornaciari, Politecnico di Milano, IT

D6 Emerging Technologies, Systems and Applications

Chair: Siddharth Garg, University of Waterloo, CA Co-Chair: Michael Niemier, University Of Notre Dame, US

D7 Formal Methods and Verification

Chair: Jason Baumgartner, IBM Corporation, US Co-Chair: Julien Schmaltz, Open University, NL

D8 Network on Chip

Chair: Federico Angiolini, iNoCs, CH Co-Chair: Fabien Clermidy, CEA-LETI, FR

D9 Architectural and Microarchitectural Design

icioarcintecturat Design

Chair: Tulika Mitra, National University of Singapore, SG Co-Chair: Todd Austin, University of Michigan, US

D10 High Level Synthesis

Chair: Ryan Kastner, University of California San Diego, US Co-Chair: Lars Bauer, KIT, DE

D11 Reconfigurable Computing

Chair: Fadi Kurdahi, University of California at Irvine, US Co-Chair: Marco Platzner, University of Paderborn, DE

D12 Logic Synthesis and Timing Analysis

Chair: José Monteiro, INESC-ID / IST, TU Lisbon, PT Co-Chair: Valentina Ciriani, University of Milano, IT

D13 Physical Synthesis and Verification

Chair: Ralph Otten, TU Eindhoven, NL Co-Chair: Patrick Groeneveld, Synopsys, US

D14 Analog and Mixed-Signal Systems and Circuits

Chair: Catherine Dehollain, EPFL, CH

Co-Chair: Günhan Dündar, Boğaziçi University, TR

D15 Modeling and Optimization of Interconnect TSV and Power Grids

Chair: Stefano Grivet-Talocia, Politecnico di Torino, IT Co-Chair: Luca Daniel, Massachusetts Institute of Technology, US

A1 Green Computing Systems

Chair: Ayse Coskun, Boston University, US Co-Chair: Martino Ruggiero, University of Bologna, IT

*

* technical programme topic chairs

A2 Communication, Consumer and Multimedia Systems

Chair: Theocharis Theocharides, University of Cyprus, CY Co-Chair: Sergio Saponara, University of Pisa, IT

A3 Automotive Systems and Smart Energy Systems

Chair: Davide Brunelli, University of Trento, IT Co-Chair: Bart Vermeulen,

NXP Semiconductors, NL

A4 Ambient Intelligence and Ultra-Low Power for Healthcare and

Wellness

Chair: Srinivasan Murali, SmartCardia, CH Co-Chair: Elisabetta Farella,

University of Bologna, IT

A5 Secure Systems

Chair: Guido Bertoni, STMicroelectronics, IT

Co-Chair: Patrick Schaumont, Virginia Tech, US

A6 Reliable, Reconfigurable Systems

Chair: Jose Ayala, Complutense University of Madrid, ES Co-Chair: Marco D. Santambrogio, Politecnico di Milano, IT

A7 Industrial Experiences Brief Papers

Chair: Emil Matus, Technische Universität Dresden, DE Co-Chair: Roberto Zafalon, STMicroelectronics, IT

T1 Defects, Faults, Variability and Reliability Analysis and Modeling

Chair: Robert Aitken, ARM, US Co-Chair: Joan Figueras

Co-Chair: Joan Figueras, Universitat Politècnica Catalunya, ES

T2 Test Generation, Simulation, Diagnosis and System Test

Chair: Grzegorz Mrugalski, Mentor Graphics Poland, PL Co-Chair: Bernd Becker,

University of Freiburg, DE

*

T3 Test for Mixed-Signal, Analog, RF, MEMS/bioMEMS/MOEMS

Chair: Haralampos Stratigopoulos, TIMA Laboratory, FR Co-Chair: Andre Ivanov, UBC, CA

T4 Design-for-Test, Test Compression, Test Access

Chair: Rohit Kapur,

Synopsys, US Co-Chair: Paolo PRINETTO, Politecnico di Torino, IT

T5 On-Line Test, Fault Tolerance and Reliable System Design

Chair: Lorena Anghel,

Co-Chair: Fabrizio Lombardi, Northeastern University, US

E1 Real-time, Networked, and Dependable Systems

Chair: Giuseppe Lipari, ENS-Cachan, FR

Co-Chair: Stefan M. Petters, CISTER-ISEP, IPP, PT

E2 Compilation and Code Generation for Embedded Software

Chair: Heiko Falk, Ulm University, DE Co-Chair: Florence Maraninchi, Grenoble INP / Ensimag & VERIMAG, FR

E3 Model-based Design and Verification for Embedded Systems

Chair: Wang Yi, Uppsala University, SE Co-Chair: Saddek Ben Salem, Verimag, FR

E4 Embedded Software Architectures

Chair: Oliver Bringmann, FZI Forschungszentrum Informatik, DE

Co-Chair: Marc Geilen, TU Eindhoven, NL

E5 Cyber-Physical Systems

Chair: Anuradha Annaswamy, MIT, US Co-Chair: Rolf Ernst, TU Braunschweig, DE

	DATE14
	Ц
	A
	\geq
	Ш
 	Ĕ
	Dresden, Germany
	ð
	È
	e
	so
	Le la
	7
	6
	~
	5
	ar
	Σ
	80
	2
	24-28 March 2014

×

*

*

 \star

DETATI FD TN detailed index

ACM SIGDA/EDAA PhD Forum	127
Awards	32
Contact Event Secretariat	14
DATE At A Glance	15-22
DATE Executive Committee	130
DATE Party	8
Event Overview	14
Executive Sessions	9
Exhibition Theatre	128
Friday Workshops	103-124
Fringe Meetings	127
General Information	7
Interactive Presentations	8
Keynote Addresses	4-6
Opening Plenary	32
Programme Guide	1
Special Day: System-Level Design	10
Special Day: Advancing Electronics beyond CMOS	5 11
Special Sessions	12
Sponsors	C1
Technical Programme	32-102
Tutorials	23-31
University Booth Demonstrations	127
Vendor Exhibition	126
Venue	7
Venue Plan	C4
Welcome	2

Conference & Exhibition March 09-13, 2015 • Grenoble, France

CALL FOR PAPERS

Scope of the Event

The 18th DATE conference and exhibition is the main European event bringing together designers and design automation users, researchers and vendors, as well as specialists in the hardware and software design, test and manufacturing of electronic circuits and systems. It puts strong emphasis on both ICs/SoCs, reconfigurable hardware and embedded systems, including embedded software.

Structure of the Event

The five-day event consists of a conference with plenary invited papers, regular papers, panels, hot-topic sessions, tutorials, workshops, two special focus days and a track for executives. The scientific conference is complemented by a commercial exhibition showing the state-of-the-art in design and test tools, methodologies, IP and design services, reconfigurable and other hardware platforms, embedded software, and (industrial) design experiences from different application domains, such as automotive, wireless, telecom and multimedia applications. The organization of user group meetings, fringe meetings, a university booth, a PhD forum, vendor presentations and social events offers a wide variety of extra opportunities to meet and exchange information on relevant issues for the design and test community. Special space will also be allocated for EU-funded projects to show their results. More details are given on the DATE website (www.date-conference.com).

Areas of Interest

Within the scope of the conference, the main areas of interest are: embedded systems, design methodologies, CAD languages, algorithms and tools, testing of electronic circuits and systems, embedded software, applications design and industrial design experiences. Topics of interest include, but are not restricted to:

- System Specification and Modeling
- System Design, Synthesis and Optimization
- Simulation and Validation
- Design of Low Power Systems
- Temperature-Aware Design
- Power Estimation and Optimization
- Temperature Modeling and Management
 Emerging Technologies, Systems and
- Applications

 Formal Methods and Verification
- Network on Chin
- Architectural and Microarchitectural Design
- Architectural and High-Level Synthesis
- Reconfigurable Computing
- Logic and Technology Dependent Synthesis for Deep-Submicron Circuits
- Physical Design and Verification
- Analogue and Mixed-Signal Circuits and Systems
- Interconnect, EMC, EMD and Packaging Modeling
- Multiprocessor System-on-Chip and Computing Systems

- Communication, Consumer and Multimedia Systems
- Transportation Systems
- Medical and Healthcare Systems
- Energy Generation, Recovery and Management Systems
 - Secure, Dependable and Adaptive Systems
 - Test for Defects, Variability, and Reliability
 - Test Generation, Simulation and Diagnosis
 Test for Mixed-Signal, Analog, RF, MEMS
- Test Access, Design-for-Test, Test
- Compression, System Test
- On-Line Testing and Fault Tolerance
- Real-time, Networked and Dependable Systems
- Compilers and Code Generation for Embedded Systems
- Software-centric System Design Exploration
- Model-based Design and Verification for Embedded Systems
- Embedded Software Architectures and Principles
- Software for MPSoC, Multi/many-core and GPU-based Systems

Submission of Papers

All papers have to be submitted electronically by **Sunday**, **September 14**, **2014** via: www.date-conference.com

Papers can be submitted either for standard oral presentation or for interactive presentation. The Programme Committee also encourages proposal submissions for Special Sessions, Tutorials and Friday Workshops as well as submissions for the Special Days on "Designing Electronics for the Internet of Things" and "Designing Electronics for Medical Applications"

Event Secretariat

*

c/o K.I.T. Group GmbH Dresden Muenzgasse 2 01067 Dresden, Germany Phone: +49 351 4967 541 Fax: +49 351 4967 161 Email: conference-management@ date-conference.com Chairs

General Chair: Wolfgang Nebel OFFIS, Oldenburg, Germany wolfgang.nebel@offis.de

Programme Chair: David Atienza EPFL, Lausanne, Switzerland david.atienza@epfl.ch

*

136

24-28 March 2014

