
Synthesizing High-Performance Image Processing
Applications with Hipacc

M. Akif Özkan, Oliver Reiche, Bo Qiao, Richard Membarth, Jürgen Teich, and Frank Hannig
Hardware/Software Co-Design, Department of Computer Science,

Friedrich-Alexander University Erlangen-Nürnberg (FAU), Germany.

Abstract—Programming heterogeneous platforms to achieve
high performance is laborious since writing efficient code re-
quires tuning at a low level with architecture-specific opti-
mizations and is based on drastically differing programming
models. Performance portability across different platforms can be
achieved by decoupling the algorithm description from the target
implementation. We present Hipacc (http://hipacc-lang.org), a
framework consisting of an open-source image processing DSL
and a compiler to target CPUs, GPUs, and FPGAs from the same
program. We demonstrate Hipacc’s productivity by considering
real-world computer vision applications, e.g., optical flow, and
generating target code (C++, OpenCL, C-based HLS) for three
platforms (CPU and GPU in a laptop and an FPGA board).
Finally, we showcase the real-time processing of images acquired
by a USB camera on these platforms.

Image processing underpins many of today’s smart systems
ranging from medical imaging up to advanced driver assistance
systems. Yet, there is not any best computing platform that
always meets the requirements of target systems regarding
performance, energy efficiency, and power. Mobile devices
like phones and tablets strive for efficient implementations
to save battery live; driver assistance systems require image
processing to be in time; and systems in medical imaging
have to process extremely high data volumes fast. A dedicated
microcontroller, a central processing unit (CPU) or graphics
processing unit (GPU) embedded in a system-on-a-chip (SoC),
or a field programmable gate array (FPGA) might be possible
target architectures. Yet, implementation code needs to be re-
written in a programming language that is suitable for a selected
target. Furthermore, high performance can mostly be achieved
only with platform-specific optimizations, which make the code
lengthy and hardly reusable or even not portable. This is a
time-consuming task even for platform experts, yet almost
insurmountable for algorithm developers who are often mainly
interested in mathematical models.

As a solution, the Heterogeneous Image Processing Accel-
eration (Hipacc) framework [1], [2] decouples the algorithm
description from low-level implementation details utilizing a
domain-specific language (DSL), thus enables highly optimized
and efficient target code generation via source-to-source
compilation. Initially developed to target GPUs from Nvidia and
AMD, Hipacc was subject to multiple extensions over the years.
These extensions involve code generation for other accelerators,
such as embedded GPUs [3] and FPGA devices [2], [4]
through high-level synthesis for Xilinx and Intel/Altera FPGAs.
Figure 1 provides a visual overview of the framework and its

C++

embedded DSL

Source-to-Source
Compiler

Clang/LLVM

Domain
Knowledge

Architecture
Knowledge

CUDA
(GPU)

OpenCL
(x86/GPU)

C/C++

(x86)
Renderscript
(x86/ARM/GPU)

OpenCL
(Intel/Altera FPGA)

Vivado C++

(Xilinx FPGA)

CUDA/OpenCL/Renderscript Runtime Library AOCL Vivado HLS

Figure 1. Overview of the Hipacc framework and its target architectures.

target architectures. Our approach allows compact algorithm
descriptions (i.e., a high productivity), portability between
different target platforms, as well as excellent execution speed
(performance) compared to state-of-the-art frameworks.

In this demonstrator, we present Hipacc’s ease of image
processing system design. We provide DSL application codes
for various image processing algorithms, including Harris
corner detection and optical flow, from which code is generated
for any of the selected target platforms. Thereby, we target
the CPU and GPU in the demonstrator laptop as well as an
FPGA that is connected via ethernet. Additionally, we show
that other C++ libraries, such as the socket library that is used
for the Ethernet connection, can be orchestrated with Hipacc
as a benefit of having a DSL embedded in C++.

REFERENCES

[1] R. Membarth, O. Reiche, F. Hannig, J. Teich, M. Körner, and
W. Eckert, “HIPAcc: A domain-specific language and compiler for
image processing”, IEEE Transactions on Parallel and Distributed
Systems, vol. 27, no. 1, pp. 210–224, Jan. 1, 2016. DOI: 10.1109/
TPDS.2015.2394802.

[2] O. Reiche, M. A. Özkan, R. Membarth, J. Teich, and F. Han-
nig, “Generating FPGA-based image processing accelerators with
Hipacc”, in Proceedings of the International Conference On Com-
puter Aided Design (ICCAD), (Irvine, CA, USA), IEEE, Nov. 13–16,
2017, pp. 1026–1033. DOI: 10.1109/ICCAD.2017.8203894.

[3] R. Membarth, O. Reiche, F. Hannig, and J. Teich, “Code generation
for embedded heterogeneous architectures on Android”, in Proceed-
ings of the Conference on Design, Automation and Test in Europe
(DATE), (Dresden, Germany), European Design and Automation
Association (EDAA), Mar. 24–28, 2014, 86:1–86:6. DOI: 10.7873/
DATE.2014.099.

[4] M. A. Özkan, O. Reiche, F. Hannig, and J. Teich, “FPGA-based
accelerator design from a domain-specific language”, in Proceedings
of the 26th International Conference on Field-Programmable Logic
and Applications (FPL), (Lausanne, Switzerland), IEEE, Aug. 29–
Sep. 2, 2016, 9 pp. DOI: 10.1109/FPL.2016.7577357.

http://hipacc-lang.org
https://doi.org/10.1109/TPDS.2015.2394802
https://doi.org/10.1109/TPDS.2015.2394802
https://doi.org/10.1109/ICCAD.2017.8203894
https://doi.org/10.7873/DATE.2014.099
https://doi.org/10.7873/DATE.2014.099
https://doi.org/10.1109/FPL.2016.7577357

